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APPLICATION OF TEE METHOD OF COORDINATE PERTURBATION

TO UNSTEADY DUCT FLOW1

By Seymour C. Himmel

SUMMARY

The method of coordinate perturbation is applied to the unsteady flow
of a compressible fluid h ducts of variable cross section. Solutions,
in the form of perturbation series, are obtained for unsteady flows in
ducts for which the logarithmic derivative of area vsrtation with res~ect
to the space coordinate is a function of the “smallness” parameter of the
perturbation series.

9

This technique is applied to the problem of the interaction of a

l-l disturbance and a shock wave in a diffuser flow. It is found that, for a

$. special choice of the function describing the disturbance, the path of the
shock wave can be expressed in closed form to first order. The method is
then applied to the determination of the flow field behind a shock wave
moving on a prescribed path in the x,t-plane. Perturbation-series solu-
tions for quite general shock paths are developed.

The perturbation-series solutions are compared with the more exact
solutions obtained by the application of the method of characteristics.
The approximate solutions are shown to be in reasonably accurate agreement
with the solutions obtained by the method of characteristics.

I. INTRODUCTION

Problems involting the unsteady flow of a compressible fluid in ducts
of variable cross section are frequently encountered in the study of
nonsteady-state operation of air-breathing propulsion systems. At super-
sonic flight speeds such problems are often complicated by the presence of

be information presented herein constitutes the major part of a
thesis that was offered in partial fulfillment of the requirements for the
degree of doctor of philosophy, Case Institute of Technology, Cleveland,

* Ohio, June 1958.
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shock waves in the flow. A typical example of a situation involving both
an unsteady duct flow and a shock wave is that which e&l.seswhen the
throttle setting of a turbojet or a ramjet engine operating at supersonic ●

flight speed is changed. As a result of the change ofi-throttlesetting,
a disturbance is generated in the subsonic flow region of the di~fuser
that propagates upstream in the diffuser and interacts_with the shock
wave. The interaction of the disturbance and the shock wave causes the
latter to change its position in the diffuser and its strength. A knowl-
edge of the history of the ,shockmotion and.of the flow variables within
the diffuser during such transient operation is of great value in the

m

study of engine dynamics and the design Gf engine control systems. Y

The difficulties encountered in attempting the solution of the par-
.-

tial differential equations describing the flow of-a compressible fluid
are well known. The usual procedure in solving problems governed by these
equations is to--reducethem to a more manageable form by omitting terms
whose effects are of small magnitude for the problem uriderinvestigation.
In the case of ducts of variable cross section, such simplifications lead
to the concept of quasi-one~dimensionalflow commonly 6mployed in steady- @

flow theory. In the quasi-one-dimensionalapproximation, it is assumed
that the cross-sectionalarea of the duct-_variesslowly @th distance
measured along the axis of the duct.

+
Under t-heseconditions the velocity <

of the fluid is assumed to have the direction of the duct axis and all
flow,variables are assumed to be uniform over any duct crosssection.
For unsteady quasi==ne-dimensionalflows one-has to de~, therefore, with
a single space coordinate and the time as”the independe?itvariables of
the problem. Even with these simplificationsthe equations cannot, in
general, be solved analytically.

In the main, unsteady quasi-one-dimensionalflow problems have been
treated by the method of characteristics (cf. ref. 1 an~the extensive
bibliography therein). Solutions are obtained by numer+cal methods or by
a combination of graphical and numerical methods. In e3Xher case much
labor is involved and only the answer to an individual problem is ob-
tained. A reasonably accurate approximate analytical method for treating
unsteady quasi-one-dimensionalflow problems is therefo?~ desirable.

Among those who have studied unsteady duct flow by-&&tical methods
are Kantrotitz (ref. 2) and R. E. Meyer (ref. 3). I@ntrowitz studied the
formation and the stability of shock waves in duct flows.by linearizing
the equations of motion. He was able to demonstrate the~instability of
shock-free diffuser flows by this method. For diffuser-flows in which a
shock wave is a part of the eqtiilibriumflow, he”was able to demonstrate
the stability of the position of the shock._ Because he.was primarily
concerned with stability considerations,Kantrowitz conaidsred disturb-
ances in the form of pulses, and his ~scussion of the interaction of a
shock wave and a disturbance centers about conditions in”:theimmediate
vicinity of the shock.
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Meyer treated waves of finite amplitude in ducts by considering the
relations among the derivatives of the Riemann invsriants along the
characteristics. In this manner he developed a first-order theory for
advancing and receding wave fronts in shock-free duct flows. By means of
this theory, he demonstrated the inherent instability of shock-free dif-
fuser flows and was able to give a partial solution for the interaction
of two wave fronts.

In what follows, an .apyroximateanalytic method for treating the un-
-—

steady quasi-one-dimensionalflow of a perfect fluid is developed. This
method differs from those preciously considered in that it is based on
the method of coordinate perturbations (ref. 4). Solutions, in the form
of perturbation series, are obtained for unsteady flows in ducts for which
the logarithmic derivative of erea variation with respect to the space
coordinate is a function of the “smallness” parameter of the perturbation
series. These perturbation series have as independent variables the
characteristicparameters of the hyperbolic differential equations gov-
erning the flow. This technique is applied to the problem of the inter-
action of a disturbance and a shock wave in a diffuser flow. It iS found
that, for a special choice of the function describing the disturbance,
the path of the shock wave can be expressed in closed form to first order.
The method is then applied to the determination of the flow field behind
a shock wave moving on a prescribed path in the x,t-plane. Perturbation-
series solutions for quite general shock paths are developed.

The solutions obtained by the approximate analytic method are com-
pared with the more exact solutions obtained by the application of the
method of characteristicsusing a finite-difference technique. The per-
turbation series solutions are shown to be in reasonably accurate agree-
ment with the solutions obtained by the method of characteristics.

The author is very pleased to be able to take this opportunity of
achowledging his indebtedness to Professor G. Kuerti for his guidance,
encouragement, and many valuable suggestions and criticisms throughout
the preparation of this thesis.

II. APPLICATION OF THE METHOD OF COORDINATE PERTURBATION

TO QUASI-ONE-DIMENSIONALFLOW

In the usual perturbation theories for supersonic flow and wave
propagation, the solutions are represented by perturbation series in
which the flow variables are given as functions of the physical coordi-
nates of the problem. For exsmple, for a small deviation from a uniform
two-dimensional steady flow, the velocity components u and v are

---
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given by expressions such as
—

—.

2 qx,y) + ● ● “,u+eu (I)(x,y) -t-euu=

(2.1)

(All symbols are defined in the appendix.) In these equations, U is the

(1)(x,y) is a detiation (in the x direc-undisturbed flow velocity and u
tion) from the uniform flow. The magnitude of the de@ation is governed
by a “smallness” parameter e. For many problems this~method is adequate.
In some cases, however, such solutions prov~to be inadequate for exam-
ple, in the Prandtl-Meyer expansion in two-dimensionalsteady flow (cf.
section 2 of ref. 4).

~...
For hyperbolic differential-equationsthe charact_~isticparameters

are the natural independent variables. In a“lerturbat@n theory based on
the characteristicform of the differential equations,litmay be expected
that the difficulties encountered in the more usual p&:turbation method
may be avoided. Such a theory was developed by C. C. L<n (ref. 4) for
quasi-linear systems in twm independent v~id)lesj it is based on ideas
implied in the work of R. E. Meyer (ref. 3) and suggesed by K. O.
Friedrichs (refs. 5 and 6). It is referred to as the method of “coordi-
nate perturbation.~’

In this method characteristicparameters””a and “13are introduced,
and the physical coordinates (say, x and y in two-dimensional steady
supersonic flow) as well as the flow variables u, v aTe expressed in
terms of the parameters. The perturbation solution thus appears in the
form

Parametric.representations, such as that given above, have disadvantages
associated with the mapping onto the characteristicplane.. First, bounda-
ry conditions are normally specified in the physical pl~.e, and it is
usually difficult to Impose the boundary conditions in the plane of
characteristicparameters. Second, a single-valued solution in the plane

.

cl-l
g

.
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of charact=istics could become multiple-valued in the physical plane.
However, if, as in the case considered, the flow is a perturbation froma

. uniform state, the freedom in the choice of the characteristic parameters
makes it possible to avoid multiple-valued mappings and to specify the
boundary conditions easily.

In the paper in which the perturbation theory was developed, L&n
treated problems of two-dimensional steady supersonic flow and emphasized
the proper choice of the mapping, that is, of the parameters a and P.

--

He was able to give a convergence proof for this case. In her thesis
(ref. 7), P. Fox applied the method to the propagation of plane (“strictly” —
one-dimensional), cylindrical, and spherical waves. She was able to give..-
a convergence proof for the case of ~lane waves. In what follows, the
method of coordinate perturbation is applied to quasi-one-dimension= ..
flow.

.

of a

●

A. Equations of Motion

The equations governing the homentropic, quasi-one-dimensional
compressible fluid sre (ref. 8):

2
U’u’

“%’+ T-l C’C;’=
o,

x’

2 2 %’
C’u’ +— U*C’ +

X’y-l mc;’+c’u’r=ox’ y }

flow

(2.3)

where A’ = A’(x’) is the cross-sectional area of the duct at the station
x’. These equations are in terms of dimensional quantities. In what
follows, it will be convenient to use dimensionless quantities for the
variables given by: ,

u’ c’. t t’c~
u = —. c

Ck’ = -i?c*
‘7E; X=5+A=

~ (2.4) --

where the asterisk refers to the critic~ condition-”oft~ basic steady-
--

flow problem; that is, where the local particle speed equals the local
speed of sound. Transformation of equations (2.3) to equations involving--”
the
but

a

dimensionless quantities does not change the form of the equations
merely affects the boundsry conditions.

-—
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When the dimensionless equations (2.3) are written in canonical form,
they become: —

.

where

Xa= (U+c)ta,

XP= (u- Cjtp,

+xUa+uca=-uc —t
A a)

- ac AX”
% B=”’TtpJ 1

1

a 2~ —,
r -1

(2.5)

—

(2.6) ‘

and a and ~ are the characteristic parameters. ~us, (2.3) is re- ‘.
placed by four differential equations for four unknowns in such a way that
each equation involves only differentiation with respect to one character-
istic parameter. .

While the pair (2.3) is irreducible in the sense of reference 6and
thus Rlemann’s method of integration can no longer be applied, equations
(2.3) or the equivalent system (2.5) can, of course,-be solved by the- ‘.
application of the method of characteristics,and matiysolutions for.”par-
titular problems have been calculated in this manner:(cf. for example,
ref. 1). It is advantageous, however, to develop an:approximate analnical
solution for perturbation problems governelby these equations. Such a
solution is obtained by the application of the method of coordinate
perturbation.

—
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B. Perturbation Solution

. A solution of equations (2.5) is sought in the
series given by

SX(o)(a,p) += (l)(a,p) +Gxx 2 %,P)

t t(o)(a, p)+et (I)(a,p) +Et2 (2)(a,13)=

U=u (0)(a,p) +eu (l~(a,p) +Gu2 ‘2)(a,B)

(0)(a,p) +Ec (I)(a,p) + e cC=c 2 {2~(a,p)

fo~ of perturbation

+“

+“

+“

+“

.

.

.

.

(2.7)

The solution is, of course, a function of the duct area variation A(x).-*
In order to render the initial investigation as simple as possible, the
duct area was assumed to vsry according to the relation

. A= e-b(x-L) (2.8)

where b is a dimensionless constant and L is the dimensionless loca-
tion of the duct throat (cf. (2.4)). For this choice of area distribution,
equations (2.5) become

Xa=(u+c)ta, >

Xp= (u- C)tp,

+ UC‘a = ucbta,
a }

(2.9)

-at=
% P -Ucb%”J

.

--
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Substitution of equations (2.7) into equations (2.9) yields

(2.10)

Upon expansion of these equations and equating the coefficients of like
powers ofi---e,there is obtained

.

.

i ““
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Typical sets of these equations are:

9

.
Zeroth order:

.

&

v

‘0)=(u(o)+C(”h:),‘a

(0) = (u(o) -c (0))tp,
‘P \

First order:
7

(2.12)

x(l) = (u(o) +c@))&) + (u(l) +Cqtyj
a I
m =(u(o) -C:o))ty + (u(l)- Jljtp,

‘P

[ .11

(2.13)
# + # = ~ ~(0)c(o)t(l) + (#c(l) + Jdc(o))ty ,
a a a

(1)
- c+)

[
=-bu

1

(0)c(o)tp + (Umcm + ycm)tp .
‘%

It is of interest to note that,whereas the zeroth-order equations
are quasi-linear (they are identical.in structure tith (2.9)), the higher
order equations are linear and homogeneous in the unknowns of the same

-—

order; that is, the coefficients of the unknowns are functions of the
solutions of the lower order equations. -—

We wish to consider small unsteady perturbations of a steady flow in
a ductj thus, the unperturbed flow should be a steady duct flow. This
unperturbed flow is represented by the zeroth-order solution. The steady
flow in a quasi-one-dimensionalduct is completely determined by the con-
tinuity and Bernoulli equations in dimensionless form:

A-,= (.;y’’2u~--&]”’2, (2.14)

2 2
u + Gc =IJ+l. (2.15)-
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These equations must be considered as time-lndependen~integrals of the —

nondimensional form of equations (2.3) and, since equations (2.5) are
equivalent to equations (2.3), they are solutions of these also. The .
zeroth-order equations (2.12] are the same:as equatioris(2.5) with the
area variation given by equation (2.8) used to evaluate the term ~/A.

Thus, the solution of the zeroth-order equations is ~ven by

e
b(x(0)-L)

.(~:,y’2u@) ~.#]”’2, (2.16)

In order to
the zeroth-order
To determine the
with u = 1(T=

~(o}2 +uc@)2=a+l. (2.17)

proceed to the solution of-the higher”order eauations,
solutions must be expressed as fu~ctions of ~ and b..
form taken by these functl-iis,an example was chosen _.
3). This choice of T pezhnitsa simple algebraic form -’

—
of the solution of equations (2.16) and (2.17) for u(o) and c(o) as

functions of x(o). For subsonic flow downstream of the throat, these . =:
solutions are:

c(o) =~+ i=@?l”2
from.which it can be shown that

Jo)
[

+C(O] =+ ~_ Jix 1
(“)-L] 1/2

>

- Jo)=- -&+~(o)

The zeroth-order
of equations (2.12).
therefore:

L

characteristicsare
On a characteristic

.Jo]

[,- J’(x(O’-Lr’u

eb(X
1

(o)-~) 1/2
.

(2.18)

(2.19)

(2.20)

(2.21)

determined from the first two
P = constant} we have

+@) -. (2.22)
.



NACA TM 1439
.

U

Ai.
8
a

Setting

g(xw) = eb(x(0)-L)

whence

equation (2.22) becomes

Integrating this along the j3= constant

1- 1

(2.23)

(2.24)

b dt(o). (2.25)

characteristic,we obtain

+wl ‘+bt(o)+m’)”(2.26)

At this stage the freedom of selection of the c~acteristic p~~eters
mentioned preciously enters. This means that the equations are invariant
if one replaces a and B by CL’= f(a) and 13’= g(j3). It canbe
easily demonstrated that under these circwtances we ~Y stiPulate t~t
a given curve of the flow plane (i.e.J the x,t-plane) should be the image
of a given curve of the ajp-plane. Now it is desired to have the
zeroth-order solution represent the initial steady flow in the channel;

...—

that is, along the line t = O, for exsmple. Therefore> we select the
characteristicparameters such that.on t=o,x=a= @ (i.e., the x-axis
is the image of u - p=o). For this choice of the parameters, equation
(2.26) becomes

p,j-+=&q=J@’. ,2,27,

Similarly, on an a = constant ctiacteristic we have

‘k=bfd=+bt(o)o‘2-28)
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.
Eliminating t(o).from the last two equatiois and solfing for ~, we
obtain —

and

where

.

(2.29)

-. —

u-l
a
w

(2.30)

,=3G3%2.
6==-1 -

From these equations we obtain for the physical coordinates:

(2.31) - -
—

By substituting equation (2.29) into equations (2.18) and (2.19), the
particle velocity and speed of sound are given by

“
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These rather formidable equations give the parameters of a steady
duct flow (i.e., the zeroth-order solution) in terms of the characteris-
tic parameters cc and J3. The higher order approximations are given by.
linear equations where the coefficients are functions of the lower_order
solutions. For example, the first-order equations (2.X5) have coeffi-
cients derivable from equations (2.32) to (2.35). The higher order equ~--- —
tions are, however, complicated and must be solved simultaneously. No
simple analytical technique seems applicable - perhaps a numerical tech-

*

nique would be feasible.

To illustrate the nature of the zeroth-order
variation selected, an example was computed. The
lustrated in the sketch.

solution for the area
flow ‘“ “- - ‘-sztuatlon is 11-

Throat~
~(o)
~(o)

Jo) =~

Jo) = o

=- 1

= 1 —

We have a duct with srea increasing to the left.. me t~oat @.*he duct ._..._

is located at x(0, = L, and the flow is from right to left. The coeffi-
cient b was chosen as 1, and L was taken as 2. Typical characteris-
tics of the zeroth-order solution for subsonic flow downstream of the
ttioat are shown in figure (2.1). The characteristics B = constant are

—

essentially straight at the left, that isy the region of large areas, and
have increasing curvature as they approach the throat, where they have a

.—

vertical.tangent. The characteristics a = cons@nt are essentially
straight throughout the duct. The variations of particle and sonic e~e.ed -
and Mach number along the duct sre shown in figure (2.2).

At this point it is of value to digress from the p_@.icular problem
at hand and to note an important feature of the method of coordinate
perturbation that is implicit in the preceding development.

-.
In the case

under consideration, we find that a and 13 may, at the sane time, be
considered as the characteristic parameters of a zeroth-ord~ solution —.

and of an “exact” solution (in the example, the fiteadyduct flow). That
is, the perturbation-series solution begins with the exact characteris-

-.

tics of the underlying flow. The lines m = constant and P = constant

x(o) (a,~) and t(0) (a,~) onto the characteristics in theare mapped by

x(o),t(”)-plane and by x(a,j3)and t(a,j3)onto the characteristics in ~he_
x,t-plane. Had it been possible to determine the solutions of the
equations of higher order, these higher-order terms would”not”only have
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changed the distribution of the flow variables along “thezeroth-order
characteristics in the physical plane but would also “havechanged the

—

characteristics themselves. That is, the lines a = constant and
—

.
P = constant would no longer be mapped by x(a,J3)and t(a,~) onto the
characteristics of the underlying flow in the x,t-plane but instead
would be mapped onto the approfim&te chara~-teristics~of the perturbed
flow. ‘In other words, the significance and the properties of the charac-
teristics are retained in the method of coordinate perturbation. This is
in marked contrast to the more usual perturbation theories in the physi-
cal plane, in which the characteristics of the perturbed flow do not ap-
pear e~licitly.

— ~

C. The “Epsilon Duct” Q“

A way of avoiding the difficulties involved in obtaining the higher
order solutions for the preceding example presents itself when the duct
area variation itself is considered as being of the same order as the
“smallness” pmameter e. In particular, the case ~/A= - c was --

studiedj such a duct shall.be referred to & an “epsilon duct.!’
—

Such=
choice amounts to requiring that the duct area vary s~owly, but places no
restriction on the over-all area vsriation (i.e., over a long stretch of
the duct). For this choice of area variation, equatitis (2.9) become

c“

Xa= (U+c)ta,

Xp = (u- C)tp,

~ +–uca = GUcta,u

-uc=-
‘P P

Guct
1P“

(2.36)
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Substituting equations (2.7) into equations (2.36) and equating the coef-
ficients of like powers of e yields .-

.
k

~(k) =

F
(u(x) + c(A))$-A) ,

a
=0

1
k

(k) ,=

z

(u(~) - ~(~)~t~k-~);
‘P

k=o,l,2 ““”

~(o) + cm(o)= o; U$OJ - # = o;

}(2.37)

$s)
+ Crc(k)a

.~ ~ ;x)u(,-jty-l-J),

k-1 j
(k) =

- acjk)
:Z[z ]

c(A)U(j-A) tjk-l-j);
%

k=l,2,3 ‘--

J=o A=o J

Typical sets of the approximate equations are: ..—

Zeroth order:

Xy = (Jo) + ~

1
(O+t$o), “

(0) = (u(o) - ~(0))tp,
‘P

@ + @l = 0,

- Jo)(o) = o.

‘P P

(2.38)

.

L
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First order:

)
~y) = (U(o) +C(o))t$) + (u(l) +.c(l))ty), .

(1) = (u(o) - ~(O+tp+ (u(l) - Jqtp,
‘P

$)
+ .$) = $o)u(o)t(o)

}

(2.39)

a>

- +
(1) =

%
- Jo)u(o)$). J

Second order:

L
~$d =.(uo)+.cqt$a+ (J)+m)t$) +(u(?~+c(z))ty),

Xp = (-y) Jo))tp+(u(l) N)tp+ (lw -Cqtp,
@ + ..5) = c

(2.40) -
(0)u(o)t(l) + (C(qp +Juuqty)

(2) =-c
- acjz~ (0)u(o;tp- (c(o)u(~)+c(l)u(o~)tf).

‘$

Third order:

&L (U(o)+c(o))ty) +(u(l)+ c(l))ty)+(u(z) +c(z))tf)+ (W)+ cw)tp,

(~)= (u(o).C(o)]tp+(um J+tfa+(u(d - .(z))t~~+(u(:) -C%y),
‘B

&)+&)=c

‘ 1

(2.41)
(0)u(o)t(d+ (C(o)u(l)+c(l)u(o)}ty)+ (c(o)u(2)+c(l)u(l)+c(2)u(o))t:),

L.
(3)
‘% -..$) =-.(0)u(o;ty)- (C(o)u(d+ Jl)u(o)&)- (C(o)u(a+C(l)U(l)~ c(2)u(o))ty).

The interesting thing about these equqtions is ~~t the right hand
.

sides of the equations resulting from the comparability conditions
—

(i.e., the third and fotirthequations of each set) involve functions of
the lower order solutions only; that is, if the latter are lmown, of the —

independent variables. Thus, in principle these equations can always be
solved by quadrature. The
conditions (i.e., the first
linear, and the coefficient
mation of t is always the
for u and c.

equations resulting from the characteristic
two equations of each set) are also always
of the derivative of the-k-th order approxi-
sum or difference of the:zeroth-order solution Gr--. —

A
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The form of the equations suggests that it would be particularly
simple to obtain solutions for problems where the initial conditions sre

T specified on a line x = Constantj for in such cases the zeroth-order
--—

solutions for u and c would be constants. This renders the solutions
for the physical coordinates relatively simple for all orders.

To demonstrate such a solution, and in order to be able to check the
values obtained against a known exact solution, it was decided to solve
the problem wherein it is specified that on the section x = O the values
of the particle and sonic speed are given by the constants U
respectively (i.e., a time-independent flow). The constants
are subject to the condition

u2+rYc2=u+l,

and C, ‘—
U and C -.

(2.42)

that is, the Bernoulli equation. The solution generated under these con-
ditions should be the steady-state duct flow.

. Equations (2.38) to (2.41) sre to be solved, therefore, under the
boundary conditions given above. The boundary conditions are to be

y satisfied in the following manner: Contrsry to the choice in the previous
~ section, now the line x = O is to be mapped on m = j3 such that

a= ~ = t. Thus, we choose

Xqa,a) =x (qp,p} = o for n20;

@J(a,a) = a, t%,P) = P,

}

(2.43)

t(n)(a,a) = tfn~(p,p) = o for n>o;

u(o)(O@) = u(0)(p,p) = u,

C(o)(a,a) = c(0)(p,p) = c,

}

(2.44)

u(n)(a)a) = u%3jp) = c(n)(a,a) = c(n)(~,~) = O for n >0.

The second pair of the zeroth-order set (eqs. (2.38)) gives for the
psrticle and sonic velocities simply

---
U(o) = u; c(o) = c.

.
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Inserting these in the equations for the
yields

— tiCA-T!M1439
.

characteristicsand integrating -—

.

Jo) . (u + c)t(o~ = %(P))

Jo) - (u - C)t(o) = g(a).

Applying the boundary conditions, we obtain

IF(p) =- (tJ+~)P,

g(cL) = - (u - C)CL.

Therefore,

~(o) =
- (a - p) U22;Cz,

The solutions of the higher order sets are obtained in-a similar manner:
The solutions up to the third order are -

J@. (~ - pp ~ (UC2 - d);

Jo) = c,

Jl) $=-(cbj3)~,

(2.45a)

(2.45b) .

.
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y
El
v.

where,

y
=- (a-

~(2)
=-(a-p)3

p)z .&-
[
C2(2U +

8uC2

[

# (OC2 + TF)2
240C CJC2

Jo)
= - (a - p) U22;C2,

1
l)+ IF, 1

1/

(2.45c)

+ (a + 1)C2 ,

X(3) =
-(a- p)4*

L
IJ

(K- N)~+(K+ N);

J) = - (a - f3)2J& (crC2+F’), )
~

(2.45d)
t(z) = - (a - p)3 - (O-@ + U2)(0’C2+ 2U2),

~(3) =-(a-p)4& (K-N)

K- N =~5 (W2 + &)(aC2 + 6U2), (Z.46)
48u C

K+N= ~6~~c2 (CJC2+T_?)(2~2&+&)+ ~ [a(cH-4)C2- (5u+2)U~ .(2.47)
4802

As anticipated, the solutions for the flow variables are independent
of the time as is seen from the fact that u) c, and x are functions of
(a - P) alone, and the possibility of the elimination of (a - p) from
these equations makes u and c functions of .X alone. .—.-

.
Although attempts were made, it was not possible to prove analytically

the convergence of the perturbation series. In any case, however, it
would have been necessary to resort to numerical examples in oral= to in-

%. vestigate the accuracy of the representation in the various regions of .x. -.
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As an example,

area variation

variation
the ratio

This
stream of
right, we
X.o

Inserting

NACA TM 1439
.

the duct e = 0.1, L = 6 was chosen; that is, the duct

is given by A = ew~-o.l(x - 6)1. A plot of the duct area .

is given in figure (2.3).L The crmss-~ectionalarea varies in
of approximately 1.81:1 from ftiitY&lline (x = O) to throat.

duct was first investigated for t& case of””subsonicflow down-
the throat with u= 1 (y= 3). With the flow coming from the
have, from the steady-flow equations (2.14) and (2.15), on

2Wm

u= -0.40504; c = 2.35497. –

these values in equations (2.45),-we obtain the series solution

-u = 0.4050.4+ 0.02744(a - f3)+ 0.00085(G - @)2 + 0.0000l(a - j3)3,

c = 1.35497 - 0.00820(~ - ~) - 0.oo056(a - B)2 - 0.oo~02(a - P)3,

0.61695(~ - ~) - 0.00633(G - 13)2- 0.~29(~ - ~)s -

1

.
x=

(2.48)
0.000ol(a - p)4,

t“-=0.35053fl+ 0.64946a+ 0.00552(a - 13)2+ 0.0CD15(a - p)3 +

o.000~3(~ - P14.
—

The second- and third-order solutions are shown i~~figures (2.4) and
(2.5) by the data symbols. The exact steady duct flow is given by the
solid curves. As can be seen in figure (2.4), the flow velocity is very
well represented by the second-order solution up to ab@t x = 4. The
third-order solution extends the accurate representation up to x = 5.5. —

Only in the immediate vicinity of the throat (x = 6) does the departure
from the exact solution become relatively large. The wsnic speed is also
well represented by the approximate solutions, as seen in figure (2.5).
Again, large departures from the exact solution occur only near the throat.

The variation
is shown in figure
solution decreases
of this quantity.
(x, a - j3)-relation

of the space coordinate x with the-quantity (a - ~)
(2.6). Proceeding from the second-to the third-order
the variation of x with (a - @) fcirthe larger values

,.

That is, the higher degree terms of._(a- j3)cause the
to become more horizontal for. .

above 7. For values of (a - P) less than 7, “the
solutions give the same value for x. It may be
(G- 13)which yield values of x greater than 6
solution.

valueti’ofthe”argunient. —
second- and third-order
recalled that values of
are no-tpertinent to tb ‘ -
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+ A typical @ = constant curve in the x,t-plane of the third-order
solution is shown in figure (2.7) along with the exact characteristic. The ‘“ -

. case shown in that of j3. 0, and the points indicated by the data symbols
are obtained by setting ~ = O in the last two of equations (2.48) and
eliminating a. The exact characteristic is obtained by setting b = e
in equation (2.27) and using the appropriate value of L. It is evident
that the approtimtion to the actual characteristic is very good up to the
vicinity of the throat, in which region the departures become lsrge.

D. Factors Affecting Convergence and Accuracy

From the preceding exsmple, it appears that the approximate solution ..._.
does converge to the duct flow solution. There sre a number of factors
that may affect the nature and rapidity of the convergence. Among these
are the magnitude of e, the over-all area ratio of the duct, the loca-
tion of the initial line on which U and C sre specified, and whether
the flow is subsonic or supersonic.

*

1. Effect of e. - The first step in this investigation was to deter-
mine the effect of the magnitude of e on the solutions. For this pur-
pose a set of approximate duct flow solutions were computed for different
values of e. The values of duct length were so chosen that the product ‘--
eL was gonstant. For the type of duct considered, that is,

-1
1(A=exp -ex- L)l, this results in a set of ducts of the same over-aU

area rat~o between~ x = O =d X= L but tith different rates of change
of area. These exsmples were computed for the case of subsonic flow down-
stream of the throat tith u = 5(T= 7/5). The values of the psmmet-ers
e and L used are:

RI
E L

0.1 6.0

0.2 3.0

bkl
For these cases we have, from the steady-flow equations, the boundary
conditions on x = O:

u= -0.36841; C = 1.08298.
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.

For these values the approximate solution is given by
.

?

-u = 0.36841 + e(O.19949)(a

e3(0.00862)(a - ~)3,

c = 1.08298 - e(o.o1357)(a

G3(0.00262)(G - ~)3~

- f3)+e2(0.05276)(a - @2+

1

.

-$)- G2(o.oo735)(a - p)2 - 2.49)

x J= 0.47883(a - ~) - e(O.03772)(a - 6)2 - e2(0.01376)(a - ~)3 -

e3(0.00038)(a - ~)4.

The results of the computations for these examples are shown in fig-
ures (2.8) to (2.10) as plots of u and c as functions of x. For all
the values of e-jthe approximate solutions converge on the exact solu-
tion. The accuracy of the representation is quite good, the third-order .
solution being quite accurate for about 80 percent of the duct length.
Moreover, ccmrparisonof the three figures shows that the accuracy of the
representation at correspondingyoints (i.e., equal area ratios) in the
ducts is the same for all values of E. This leads to the conclusion
that the accuracy of the approximate solution is not a function of e
alone. — ..

2. Effect of over-all srea ratio. - The over-all area ratio of an
“epsilon duct” is a function of the product EL. To-investigate the ef-
fect of the over-all area ratio on the solutions, two additional examples
were computed for an e of 0.2. For subsonic flow the values of L
selected and the corresponding initial values of the.flow.variables on
x = O are:

L u c
—

5.0 -0.23889 1.09022

7.5 -0.14270 1.09365
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The solution for L = 5 is given by
●

.
-u = 0.23889 + e(0.13022)(a - ~) + e2(0.03515)(a - ~)2 +

e3(0.00614)(a - ~)3, 1

c = 1.09022 - e(o.oo571)(a - p) - #’(o.00311)(a - p)z -

E3(o.ool13)(a - p)3, }

(2.50)-

x= J0.51894(~- P) - ~(0.01576)(~- P)2 - E2(0.00575)(~- @)3 -

G3(o.m157)(a - p)4.

.For L= 7.5 the solution is

-u = 0.14270 + e(0.07803)(a - j3)+ e2(0.02126)(rx- ~)2 +
>

.
e3(0.00382)(a - ~)3,

C = 1.09365 - e(0.00204)(a - ~) - E2(0.00111)(~ - ~)2 -

Es(o.owl)(a - J3)3,

I

I(2.51)
x = 0.53752(a - ~) - e(O.00561)(a - ~~2 - e2(0.00205)(~ - f3)3- I

The results of these computations are shown in figures (2.1.1)and
(2.12), where the particle and sonic velocities are plotted as functions
of x. Again, the approximate solutions converge on the exact solution. ‘
Comparison of these solutions as well as that shown in figure (2.9), which
is for L=3 and e= 0.2, indicates that the greater the length of the
duct (i.e., the over-all area ratio from x = O to x = L), the smaller
is the value of x/L at which a given departure from the exact solution
occurs. For example, the coordinate 5? at w~ch the third-order solution
for u has an error of 0.01 is given in the following table for the three
ducts considered:

L F ~/L g% (~)e.xact

3.0 2.64 0.88 1.70 0.760

5.0 3.80 0.76 2.14 0.573

7.5 4.90 0.65 2.66 0.405
1
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Although a given error in u occurs at smaller values of x/L as the
duct length increases, it should be noted that the ratio of the area at
x= O to that at X increases as the duct length increases. A similar
statement holds when the comparison is made on the basis of a given per-
centage error in u.

For a given value of e, the value of L determines not only the
over-a12 area ratio of the duct but also the values of the flow variables
at x= 0, since the steady flow is sonic at x = L. The larger the value
of L, the smaller is the value of U on x = O. A concomitant of small
values of U is a decreased rate of change of the flow variables with x
(or area ratio) in the vicinityof x= O (cf. figs. (2.9) and (2.12)).
It is this latter property of subsonic flow that results in the accurate
representation of the flow over larger area ratios for the “epsilon ducts’;
with larger L.

3. Effect of the location of the initial line. - To this point, only
the case wherein the initial conditions have been specified at the largest
area of the duct, that is, at x = 0, has been considered. If the initial
conditions are specified at the throat, that is, at ‘x = L, where the
rates of change of the flow variables with distance ace greatest, the
effect of this factor can be observed. For this purpose, equations (2.36)
were solved with the conditions specified at x = L. The solutions for
this case are the same as those given by equations (2.45) with the ex-
ception of the zeroth-order term for x. This is replaced by

x(o)= L- (a- ~) ‘22;C2. (2.52)

For this case we have at the boundary x = L the initial values of
u= -1, c = 1. The steady-flow solution for a = 5 ‘is represented by
the following equations:

-u = 1+ e(o.5)(a - 13)+ E2(0.1)(CL- P)2,

c = 1-

}

~(o.l)(a - P) - ~2(o.05N~ - P)2 - ~3(o”oH~ - P13) (2 53)
e ●

x= L- e(O.3)(a - p)z - Gz(o.ll)(a - p)s -

1

These equations represent the supersonic branch as weu as the sub- ._
sonic branch: To obtain the subsonic branch, the argument of the series

(a- j3)mustbe taken as negative to make <1. An eqle oftksub- -

sonic case was computed with e = 0.1 and L = 6, a?@ theresults are
shown in figure (2.13). The representations of the particle and sonic --
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velocities given by the approximate solutions are seen to alternate above
and below the exact values. The a~r~ximate solution does, however, ap-

4 pear to be converging to the exact solution as higher order terms are
used. In the neighborhood of the t~oat the approd&ate solu~

.—

good representations of the flow, despite the rapid variation of the flow
parameters with x. Although the solutions do a~ear to converge to the
exact solution, the convergence is not as rapid as that obtained for the
corresponding case with conditions specified at x = O (fig. 2.8). This
is especially noijiceablefor the sonic speed (fig. 2.13b), where the

% second-order solution reaches a maximum at about x = 4 and then de-
w
m creases with increasing x.

Some insight into the reasons for this behatior can be obtained from
figure (2.14), which shows the variation of x as a function of (a - j3)
for this example. The second-order representation of x has a minimum
in the vicinity or (a - p) = -17, whereas the third-order representation
exhibits no such behavior up to this value of the argument. This change
in the nature of the relationship between xand(a- p) is a result of

* the fact that, for negative values of the argument, the expression for x
is in effect an alternating series. The coefficients of the series are

~ of sufficient magnitude to have large effects on the representation of x
g for the larger values of the srgument. It should be noted that for nega-
. tive values of the argument the series for u and c also have alter-

nating signs.
— ..—

Thus, for subsonic flow, it can be concluded that specifying the
initial conditions at x = L, where the rates of change of the flow veria-
bles tith x are high, results in less rapid convergence of the solutions
than for the corresponding case where-the initial conditio,n~are given on
x= o. ●

---

4. Supersonic flow. - Thus far, only subsonic flows have been con-
sidered. We now examine the character of the perturbation solutions for
supersonic flow. First, consider the case with initial conditions given
at the throat. For positive values of (a - P), equations (2.53) meld the
supersonic branch of the duct flow. In this case the series do not have ‘“
alternating signs. ‘Theresults for e = 0.1 and L= 6 are shown in
figure (2.15). In this case the approximations converge quite rapidly to
the exact solution, and the accuracy of the third-order solution is quite
good for the entire length of the duct. Whereas in the subsonic case
specified on x = L convergence of the representation of c was poorer ‘—–
than that of u, in the supersonic case the opposite is true. In fact, the
third-order representation of c is excellent for the entire length con- ““ ‘—
sidered. One possible reason for the fact that the representation of u
does not appesr to be as accurate as that for c is that the coefficient
of the term of third degree in (a - 13)in the equation for u is zero
in this case.
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There remains one further case to examine. This is supersonic flow
conditions specified at x = O. For this case we have, for the same
as in the last two examples, on x = 0, U = -1.67289 and

c = 0.80019. For these values the flow is representedby

-u = 1.67289+ e(0.66931)(cL- P) + LS2(0.01685)(CPj3)2-

e3(o.06018)(ct- B)3,
1

c = 0.80019 - e(O.27986)(a - ~) - G2(0.KL197)(CL- p}z -

}

(2.54)
e3(o.o1681)(ct- IN,

x = -1.34859(a-p) - e(l.07539)(a - p)z - e2(0.43969)(G - f3)3-1

e3(0.16413)(a - ~)4.

For values of x greater than zero, (a - 13)must be taken as nega-
tive. This again leads to a series with alternating signs for the rep-
resentation of x. The results of the evaluation of’e~uations (2.54) are

.

shown in figure (2.16). For this case, as for subsonic flow specified at
= L, the approximate solutions of increasing order alternate above and

;elow the exact solution. Again, the third-order solution is a good rep- -
resentation of the flow variables over most of the duct–length. Depar-
tures of appreciable magnitude for the third-order solution occur in the
vicinity of x= 5.3. It is to be noted that both the first- and third-
order solutions for the flow variables fold back on themselves, the former
at about x = 4.2 and the latter at about x = 5.5. This is again the
result of the nature of the x, (u - f3)-relationshown in figure (2.17).
The first-order representation reaches a maximum of4.<at (a - ~) = -6.25,
and the third-order representation has a m&mum of 5.55 at (a - ~) =
-9.0. These maxima result from the strong influence o~the term of
highest degree of (a - p) in each case. These are the even-powered terms
that, for negative values of the argument, serve to reduce the rate of
change of x with (a- p) and thus produce the maxima.

5. Recapitulation. - From the preceding examination of the factors
affecting the convergence and accuracy of the perturbation-series solution
for steady duct flow, it was established that for both supersonic and
subsonic flows the series converge to the exact solution. The extent of
accurate representation of the flow depends on the over-all area ratio of
the channel and thus on the values of the flow variables on the initial
line. For subsonic flow the extent of accurate representation was greates~ —
when the initial values were given at the large end of the duct, that is,
at x=O. For supersonic flow the opposite was true; that is, the extent -- -
of accurate representation was greatest-when the initial conditions were
given at the throat. However, the differences caused by the change of’the
data carrier in the supersonic case are not as great as for subsonic flow. .
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In both supersonic and subsonic flow the poorer representations occur
when negative values of the argument of the series must be employed.

It should be noted that the particular area function chosen, that
is, the “epsilon duct)” is not the only one for which such solutions are
possible. The particular case used should be Viewed as but one of a fan-
ily of mea functions that should be amenable to the method used. This

‘p(x) where P(x) is a polynomial infamily can be represented by A= *
x. For such area functions similar results should be obtainable.

E. Unsteady Flow

To this point, the perturbation-series solution ~ been investigated
only for the case of constat conditions on the initial line. Such ini-
tisl conditions were chosen so that the solutions obtained could be easily
compared with a known exact solution, the steady duct flow. We now turn

a. to the case of unsteady quasi-one-dimensionalflow. For perturbation-

j series solutions for unsteady flows in a duct, the specification of
boundary conditions becomes complex, and more detailed consideration must

y be given to the nature of the initial data than was the case for steady
g. flow.

1. Boundary conditions. - In the usual perturbation problems, such
as those for steady two-dtiensional flow and one-dimensional unsteady
flow, there is an &derl@ng uniform state or flow that is constant both
in space and time. For example, in two-dimensional steady flow the under-
lying uniform flow is frequently chosen as a constant value of u, as in-
dicated in equation (2.1). For one-dimensionalwave propagation problems,
the underlying flow is either a constant steady flow or a state of rest.
In such cases the physical interpretation of a given set of boundary data
is quite straightfc2rwsrdand no great difficulties arise. —.

In contrast to these cases, the underlying flow in a quasi-one-
dimensional problem is uniform, in the true sense of the word, only for
one particular circumstance, that is, a state of rest. For all other
cases the underlying “uniform” state is a steady duct flow in which, of
course, the flow variables are not constant in space. For such problems
an implicit boundary condition is then: Along some line t = constant
in the x,t-plane, a steady duct flow must exist. Alternatively) one could
specify that, along a certain characteristicwhich separates the regions
of steady and unsteady flow (correspondingto the “rest!’characteristic
of a disturbance advancing into a gas at rest), the steady duct flow rela-
tion holds. This requirement introduces some difficulties in the specifi-
cation of initial data for the solution of problems by the perturbation
method under consideration. —
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Consider two intersecting nonchsxacteristicarcs J and K in the
x,t-plane enclosing a region R (see sketch).

d
c-

. v-C+

4 R
c+

777

W

c+
0 s c-

d
K

c-

*

As developed in section 28 of reference 6, if a direction is assigned
to each of the two families of characteristics (in the sketch the direc-
tion of increasing time is chosen), it can ha~en that the two character-
istics issuing from-any point on K enter R, whereas--onlyone chmac-
teristic from any point-cm J enters R. An arc such as K is called
space-like, and the arc J is called time-like. b the reference cited
above, it is established that, for problems‘Inwhich the boundsry condi-
tions are specified on both time-llke and space-like arcs, two data on
the space-like arc and one datum on the time-like-arc determine an unique
solution in the region between the arcs. lU such prob~ems, a relation..
exists between the two dependent variables on the time-like arc.

.

.

The form taken by the differential equations for the perturbation
problem (eqs. (2.37)) is such thatiit is most convenient to specify the
initial data on a time-like src. This was the case for the steady-flow
examples presented earlier-in this section. In that case it was reasona-
ble to specify both dependent variables on the time-like arc, x = O or
x = L, because the relation between the dependent variables was known and,
further, they were constant. In the more g~eral case.of’an unsteady
disturbance of a steady flow, one cannot arbitrarily specify two data on
a time-like arc as noted above. If such a s~ecificationwere made, the
region S, bounded by the characteristics issuing from point 0, would
contain an unsteady flow. This would imply that a disturbance originating
at-zoint O would influence the flow field.to the right of O at an
earlier time, a physically untenable condition. On the other hand, if it
were attempted to specify a steady flow on the bounding C+ characteris-
tic (the “rest” characteristic)issuing from-point O and a single datum
on the time-like arc, the problem would become almost ~opelessly complex
because the initial data along the “rest” characteristicwould have to be =
givenby equations such as (2.30) to (2.33).

There are, however, two ways of avoiding the difficulties noted above.
The first is to consider the problem wherein two data are arbitrarily *
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specified on a time-like arc from a tifferent viewpoint. The second is to
seek the relation between the dependent variables on the time-like arc

● that will.not produce an unsteady flow below the “rest” characteristic.

...* 2. The “inverse” problem. - We>&onsider f~st the case of an arbitrary
- disturbance of one or both ofthe dependent variables specifi&d on a time-

like UC. Such a problem can be viewed in the following manner: We give
., on a time-like arc, say on the line x = ~, a certain distribution of u

and c, one or both functions of time. We then ask what occurred at
la another station at a previous time to cause the flow at x = xo to vary
:
> in the manner prescribed. For the flow to have been a steady duct flow

prior to some time to on theboundary, it is necessary merely to specify
that for all t ~ tn the values of u and c on the boundary are to be
constant and satisfy the Bernoulli equation. This situation ii shown in
the sketch.

t u = f(t)

‘‘1 } {

f(t
such that for t < to

c = g(t) g(t

,<

c+
1 .

;0

$

c-

X

)=U

)=C

Under these conditions there will be a steady duct flow below the C-
Characteristic through (~, to). A physical example of such a problem
would be that of inquiring how to vsxy the entrance conditions into a duct
so that a given flow variation at the exit might result.

Such problems are referred to as “inverse” problems in the sequel.
It was found that the solution of such problems could be written in a
quite general fashion. An example of such a solution follows.

Consider the case of an “epsilon duct” originally containing a steady
flow. Let a disturbance in sonic speed of order of magnitude G start
at a specified time at a given cross section of the duct. For convenience
let the cross section be that at x = O and let the disturbsace begin at
t = O at this cross section. The boundary conditions under which equa--””‘“-
tions (2.37) are to be solved are, therefore, on x = 0,

u= u,
w

)

(2.55)
c = c + d(t),

.-

.-
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—

ner:
that

f(t) = o,

}

●

for t<o;

@’+uc2=a+l.
(2.56)

These boundary conditions are to be satisfted in the folloting man-
The line x = O is to be mapped on a = ~ such that a= $ = t,

is, according to equations (2.43) and

I@(a,a) =U (0)(p,p)= u,

Jn)[a,a) =U%3,P) =0, n>O;

c@&} =C (0)(p,p) = c,

1.

(2.57)

C(l)(a,a) =f(a), C%,P) =f(P),
.

c(n)(a)(z)=C!(n)(p,p) =0, n>l.

(Note the peculiar waY in which the boundary conMti~ns for this problem -
can be accommodated

The solUtiO?2S$

JO) = ~,

in the e-scheme.)

under these conditions, up to second order are:

)

@ p

J
f(~)dr;

a

Jo) SC,

(2.5Ba)

Jl) = ‘L)f(a),(l] f(p) +-c3- C~)(a - f!) + C2

}

(2.58b)
~(z) = - ~ (2) (a - p)f(~) + C~)(a - P)f(a) +

.
(Z)(a - p)z -f-C2
1
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.

Jo) =

. J1) =

X(2) =

Jo) =

Jl) =

*(2) =

- Xpk - p),

- X$+(Z - p)2+X$% - s) f(13) + x.$% - 13)f(cd+ 1

‘+a - ~)f(~) + T:)(a - 13)f(a)+ I@(a-9)2+T2
-1

I
(2)(a - ~)2f(CL)+(Z)(a- p)2f(p) +T3 . I-T$)(CL - ~)3 + T2
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.

In obtaining these solutions, the following id~t.ity has been used:

J
Y

‘(y}- = ~-””a (y-~)(n-l)f’(~)d& (2.59) “

n

The coefficients appearing in equations (2.58) are functions of U,
C, and u and are listed below: -c

tt
(1) . ~ U(2)

‘1 2 1
. -1&(&’ - U2)

u~l) = : (2) = U+cu-uc
‘2 8C

(1) = ~ U(2)= u-c IJ+uc)
‘3 2 3 8C

U(z)=g+lu
4 4 .—‘:)l

(2) CU2.,
c1 ‘r

1

(z) = *-(U - C)2”
C2

C$2).=+( U+ C)2”

(2) = U2 + C2
C4 .4C

(2.60a)

.

(2.60b)

.

8
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LF-C2
2C

* (u - Cp’

* (u + Cy

13-J (U2 + Cq
4C2

[

U2 (u2+ac2)2
24uC UC2 1+ (u + 1)C2

r* (u - c) U’(5U + c) + UC’(7U - c)
1

{[ 1}* (U. c) TJ2(W. C) , w2(7u . c)

1

{ [ 1}U(U+1)C2(U+C)2+ U2 C2(4(J-3)(U+1)+ 6UC(U+1) +’u2(5a-3
32uC3

1 {rac2 (U+1)C2 - 18UC + 7(U+1)U2 +
32uC3

[ 1}
@ (5cr-3)u2+4(u+l)uc - (U+1)C2

r 1
--( U- C)3(U-l)U+(. +3)C

CJ2-1 (u + C)(3U + c)
32C3

c-

[ 1
-~ (a+l)C2+ (a-7)l?+2(u+l)UC

X$2)

[ 1
.*(U-C) (3U+1)C-(U+3)U

x(g) =
1 -+(u+c)~3a +l)c+(a+3)q

64c

MC3 ‘c

@ -- 2 _ u-q
11 - d

(2.60c)



.

T(o) _u+c
7 2C

u-c
2C

J!_ (U2 + UC2)
8aC2

=&J-

*(U+

a- lU—.
4 C2

u
48U2C3

(F

c)

c)

—

+ UC2)(2U2 + UC2)

r- - UC2[C - 3U)
64uC3

[
- d’(c + m) +
64aC3

+ F(3C - 5ujl
-1

.

1-—
{[ 1[
aC2 C(a-3) - U(a+l) - U2 (7a+3)C + (5cr-3)U

32uC3

1
([ 1[ 1)

UC2(a-3)c + 3(U+1)U + U2 (5a-3)u - (5U+1)C
32aC3

\ J

[
‘Q 3(U -

1
l}U+ (a+ 3)C

32C3
U2
--#3u+c)

a-

[ 1
--& (u- 7)U+2(a+l)C

Cr+l J(: + 3, (u - c}
64C

(U+l)(a + 3)(U+C]
64Ca —

-.
-+

4

:

(2.60d)
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4

It is to be noted that in equations (2.58) the terms independent of the
disturbance function are exactly those given by equations (2.45) for the
steady-flow solution. Thus, the solution for the unsteady flow also
generates the underl@ng steady duct flow below the “rest” characteristic.

To illustrate the chsracter of the solution, an exsmple was computed
for a duct with an initial exit Mach number of 0.35 (i.e., on x = O).
For this Mach number and for a=5(y= 7/5) with the flow coming from S
the right, we have U = -0.37879 a“d C = 1.08226. For the disturbance,
a “finite ramp” function

..—-—

f
Bt for ()<t<~

{
f(t) = B5 (2.61)

was chosen with B = 0.0086905 and 5 = 4.0. For an E of 0.1, this
represents about a 1/3 percent disturbance in sonic speed on the boundwy

3 = O at the mnclusion of the “ramp.” Equations (2.58) were programed

y ~or computation by an IBM type-650 digital computer by using the Bell
Interpretive System (ref. 9). The program was set up so that the varia-

~ tions of the flow variables on lines of constant x couidbe calculated.
The values of the coefficients of equations (2;58) (cf. eqs. (2.60)) for
the initial values given above sre listed in table (2.1). The results of
the computations are shown in figures (2.18) and (2.19) for x = 0.5 and
1.0, respectively. In both figures the region between a = O and ~ = O
is seen to be an unsteady flow field, as e~ected from the nature of the
initial conditions. In this region both u and c vary. In the region - -
bounded by a = 4 and 13= 0, the particle velocity is essentially con-

.——

Stantj this reflects the constant value of u between these characteris-
tics on x = O. In this region the rate of change of sonic speed---tith
time increases above that below s = O. In the region-bounded by a= 4
and B = 4, the magnitude of the particle velocity decreases, and the
sonic speed continues to increase until the p = 4 characteristic is
reached, at which time a new steady state is achieved.

In both figures the first- and second-order solutions are quite
similar in shape. The principal difference is in the level of the SOIU- -
tion which, however, reflects principally the accuracy of the representa-
tion of the underlying steady flow. The changes in level in going from
‘the first- to the second-order solution is greater at x = 1 than at
x = 0.5, as expected. It is obvious also that the time interval during

.—

which the particle velocity is almost constant is shorter at x = 1 than
. at x= 0.5, which is to be expected from the triangular nature of the

---——

region between B = O and a= 4 (shown in the inset in fig. (2.18)).
—
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In order to compare the perturbation-seriessolution with an exact
solution, this problem was solved by the method of c~’acteristics with
a finite difference technique. Consider a rioncharacteiisticarc i and
two WhtS on this arc, 3 and (j-f-l)(see sketch). At-these

.

—

Ai,J+2i,J+l i+l,J+l
c-

i+l,j
i,j ~+

points the dependent vfiiables u and c are krIOW-KI. TO det~ne the”

location of point (i+l,j) and the values of flow variables at this point-;
equations (2.36) are written as difference equations. tie resulting
equations are:

*

‘i+l,j - ‘i)j
= (Ui,j

+ Ci,j)(ti+l,j - t~,j),

%+1 ,j = (“i,~+~ - Ci,j+l)(ti+l,j - %,j+l)}

1

.

- %,j+l

-e %)j+l%,j+l
(Xi+l, j - %, J+l) “

‘i,j+l - Ci,j”+l

(2.62)

The equations for x
—

and t are solved first; this yields the coordinates
of the point (i+l,j). Using these values, the last two”~quati.onsyield
the values of flow variables at this point. This is a first approximation
to the result. Improved accuracy results wheri-average v~lues, rather than
initial values, are used for the slopes of-the characteristicsappearing
in the difference equations. For this purpose, average ~alues of the flow
parameters that appear in the expressions for-these slo~s ~e computed _.
by using the values of ‘i+l,j and Ci+l,j obtained from the preceding .
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approximation. -These average values sre designated by barred symbols and
are given by:.

.

1

[ 1
Ui>j = ~ Ui,j + %+1, J J

[ 1
1 ~i,j + ci+l,J ~Fi,j =~ I (2.63a)

EL,j+l = +
[
‘i,J+l 1’+ Ui+l, j y

1
z. =—
l,j+l 2

c
ci, j+l II+ Ci+l,j “

(2.63b)

Substituting these values into their proper positions in equations (2.62)
. yields the following equations for the second approximation of the loca-

tion of point (i+l,j) and the values of the flow variables at t~s Point: .“ ._
—.._

.

.
‘i+l,j - ‘ijj

=(zi;j, +Ei, j)(t;+l, j -ti, j),

(U;+l,j - ‘i,j+l) - ‘(c~+l,j - ci,j+l)

.

(X;+l,j - Xi,j)

~%,j+lci,j+lj
(Xl+l,j ).

- ‘ @L,j+l - =i,j+l)
- ‘i,j+l

1.

(2.64)

This iteration procedure is repeated until the desired accuracy is ob-
. tained; that is, until the difference between the values of the flow vuia- -

bles for successive iterations is sufficiently small.

,.
:!.
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.

These equations were also programmed for solution on the digital
computer. The characteristic net for the problem Ii..shownin figure
(2.20). The variations of the flow variables at constant Values Of X “.
were obtained by linear interpolation between the values at the net ~oints 7
and are shown as the data symbols on figures (2.18) and (2.19). In both
the figures the method-of-characteristics‘Solution i=”in excellent agree-
ment with the second-order perturbation-series solut~on. The differences
are quite small and are slightly greater at x = 1.than at x = 0.5.
F%om this, the perturbation-series solution is concluded to give an accu-
rate representation of the unsteady flow. .;

t

To compute the series solution (both first- and second-order) at a
given value of x required about 2.5 minutes of machine time. The solu-
tion of this same problem by the method of characteristics,using the same
computing machine, took 12 times as long in machine time alone. The ratio
of machine times will increase as the magnitude of .% increases) because
of the hature of the method-of-characteristicssolut~on. To the machine
time must be added that required to plot the characteristicnet and to
perform the necessary interpolations. The advantage “ofthe perturbation
solution from the computational point of view is quite marked. Further
comparisons of this nature will be made in section IV.

.

3. The “simple-wave-type”disturbance-.- In the~rece~ng paragraphs .
the solution for an unsteady flow was obtained with both dependent varia-
bles arbitrarily specified on a time-like arc. As expected, this led to
a solution with an unsteady flow below what normally might be called the
“rest” characteristic. As noted earlier in this section, in order to ob-
tain solutions with steady flow below the “rest” characteristic,only one
datum can be arbitrarily specified on a time-like ar&. That is, there is
a relation between the dependent variables on such a~oundary. It W’aS

—

attempted to determine whether a general u,c-relaticm on such time-like
arcs could be derived which would permit specification of these variables
on the boundary and still produce solutions with a steady duct flow below
the “rest” characteristic. Unfortunately no such re@tion could be es- . .-
tablished analytically. It was therefore decided to Investigate some
simple u,c-relations to see whether the desired restiltcould be approxi-
mated. Taking a clue from the nature of the zeroth-eider equations, which
are the same as those for one-dimensional flow, it was decided to investi-
gate a disturbsmce in which the Riemann variable Q = u - uc remained
constant on the boundary. One-dimensionalflows in which a Riemann varia-
ble is constant throughout the flo”wfield are called simple waves. Such
flows are characterized by the fact that they exist adjacent to a region
of constant state. Because of the nature of the u,c-relation, such
disturbances shall herein be called “simple-wave-type!!disturbances.

.

For such “simple-wave-type” disturbances in an “epsilon duct” the
problem may be stated as follows: Given a steady due? flow with flow”
variables U and C at a given cross section. Let fhere be a disturbance

●
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in the flow at this
that the parameter
the ensuing flow in

39

section, commencing at a specified time, of such nature
Q= U-UC is constant on the boundary. Determine”

. ..

the duct.
.

The boundsry conditions for the problem are then (choosing x = O
as the cross section and t = O as the beginning of the disturbance for
convenience)} on x = O,

:

.

where

u=

}

u+ Gaf(t),

c = c!+ ef(t),

(2,65)

(2.66)

The boundary conditions sre to be satisfied as follows: The line
= o is to be mapped on a= B such that ~= P = t) t~t is~ accor~ng

to equations (2.43) and -.

++a,a) =u(n)(P,P) = 0, n>l;

c(o)(a,a) = c@J(p,p) = c,
}

(2.67)

Cqa,a) = cqp,p) = o, n>l. J
For these boundary conditions we see that on x = O we always have

.

*
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that 3s, a constant value of one of the Riemann variables on the boundsry.
For these boundary conditions the solutions up to second order are:

~(o) = ~,

*(1)
(l~f(p),= lT~)(a - ~) + U2

..).

(2.69a)
U(2) (2) p f(T)dT;(@(a - p)f(p) + us ~= u~@(a - p)2 +-U2

J

@ = r-J,

.(1) = ~~)(a - ~) + ~jl) f(p),

1 (2.69b)

(2.69c)
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. The coefficients appearing in equations (2.69) are functions of U,
C, and CT and are listed below:

(1) I?
c1 ‘-z

-L

U(2]
1 u (0’C2-U2)

‘G

(u - C)(IJ+ UC
4C

i
(2.70a)

(u+ C)(U+ ac
4C 9

C:l) = ~ “- )
(2) (u - C)2

C2 4C

C$) _ (u + C)2
4C

(2.70b)
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(o) =
‘1

-L

(1) =
%2

(2) =
‘1

(2) =
‘3

C2 - U2
2C

()[ 1
1- Q2(2U+1]C%F

-Gc

=# (u - Cy

a--.-& (u + C)2

[ 1
- & (3U + 2)C2 + & + UT$2)

{ [ 1}
QhJc2(c- 7u)+@(4u-l}c -u

, ~$z)

32uC2

(a + l)(3a + 1~(u-c)+u’ry —
18C2

U+l (U+c} #
w“

C2 ( +2aw+ac2} +IJ@

~2
~ (u + c) + my
8C2 —.

u-

[ 1
-# (a-3)u+ (3U-l)C +IJ’@

.

u-l
NCN
CD

(2.70c)
.

.
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(O]=u+c
‘1 2C

&) c-u
2C.

Oa
to
1%

U+qu.c)
4C2

a- qu+c}
42

u—

u
(U2 + UC2)(2U2 + acz)

48u2C3

[ 1
~ UC2(C - 3U) + U2(3C - S@
32uC3

(a + 1)(U + 31(U . c)

16C3

[ IIU CY(u+ 1)C2 + 4UUC + u2(3a - 1)
16uC3

028;31 (U+c)

o-

[ 1
-& (a- 3JJ+ (3U-l)C

a- l-$
T“

~3 ( +UC2).

43

(2.70d)

J

To illustrate the nature of the solution for the “simple-wave-type”
disturbance, an example was computed for the same values of U, C, e, an-d
u used in the preceding example. The disturbance function f(t) is
again defined by equations (2.61) with B = 0.0086905 and 5 = 4.0. The
values of the coefficients (eqs. (2.70)) for these values of the parame-
ters ae given in table (2.2).

.- — —
.

The results of the IBM computations are shown in figures (2.21) to
(2.23) for x values of 0.5, 1.0, and 2.0, respectively. At ti” “Values -
of x the character of the variations of both u and c sre similar,

. consisting of almost linear changes in the variables between their initial



44 NACA TM 1439

.

and final values.
that in the region
tially constant at
“simple-wave-type”

The most interesting aspect of the results is the fac$
between a= O and ~ = O the variables are essen-
their original values. Tbls indicates that the
disturbance yields a flow in which the p = O charac- “

teristic approximates a “rest” characteristic. The principal difference
between the first- and second-order solutions is again in the level of the ~
variables; this reflects the convergence of the-terms representing the
steady flow to the exact solution. It is also seen thgt the slopes of the
second-order solution during the yeriod in which the flow quantities are m
changing are greater than those of the correspondingfirst-order solution.

N@
The maximum departure from constant conditions in the region between

co

a= O and ~= O occurred in the second-oid= solution for c at
x= 2.0. The errar in c in this region is, however, only 2 percent of
the total change in the variable during the transient, a quite reasonable
approximation to steady conditions. Thus, even the second-order solution .
yields an essentially steady duct flow below @ = O.

Two other points should be noted about the nature of the transient.
First, as the compressive disturbance is propagated up6_tream,its magni-
tude increases. For example, at

.-
x = 0.5 the total change in u is

0.0186 or 4.6 percent of its initial value. At x =_2~0 the change in u
is 0.0235 or about 4.8 percent of its initial value.

-.
Corresponding

changes in c sre 0.00366 (0.34 percent) at x = 0.5 and 0.00426 (0.36
percent) at x= 2.0. The second point of interest is~hat at each crow

.

section the value of Q remains essentially~constanta-tits original
value during the transient= At X= 0.5 the initial valueof Q is
-5.8042, and its terminal value is -5.8039. At x= 2 the corresponding
values are -5.8513 and -5.8493. This fact will play an important role
in the next section.

—

To check the accuracy of the perturbati.on-seriessolution, this
problem was also solved by the method of characteristics. The character-
istic net is shown in figure (2.24). Again, the values of the flow vsria-
bles at fixed cross sections were obtained by linear interpolations between
the net points and are shown as the data symbols on fi~res (2.21) to

-.

(2.23). At X= 0.5 and 1.0, the method-of-characteristicssolution is
in excellent agreement with the second-orderperturbation-series solution.
At x = 2, the agreement is not as good but is still quite acceptable;
the maximum deviation occurs in the variable c, being qbout 6 percent
of the change in c at this station. It is-of interest to note that-at-
X= 2.0 the method-of-characteristicssolution exhibits a slight decrease
in c in the region between a = O and P = O, as doe~ the series solu-
tion. Thus, over an area ratio of 1.22 the series solution is seen to be
quite accurate for the unsteady flows investigated.

*
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F. SummarY

.
* In this section the method of coordinate

to the solution of’quasi-one-dimensionalflow

45

perturbation was applied
problems. It was demon-

strated that, for ducts for which the logarithmic derivative of area vsria-
tion with respect to the space coordinate is a function of the smallness
ptiameter E, perturbation-series-typesolutions for both steady and un-”

.- .—

steady flows can be obtained.
.——--

By means of numerical examples it was demonstrated that the solutions
for the steady flow converge to the exact duct flow solution. The princi-
pal factors affecting the rapidity of the convergence were shown to be - ‘-”- “-” -
the srea ratio and the magnitudes of the initial data. In general, good

-.

representation of the flow was obtained over area ratios as large as 1.8:1.

For unsteady flow it was shown that solutions could be written for
arbitrary disturbance functions in both flow variables specified on time-
like arcs. For such initial data the problems were termed “inverse” prob-

. lems because, from a physical viewpoint, the solutions give the unsteady
flow in other regions of the duct (at earlier times) which would produce
the specified variation of the flow quantities on the boundary. It was
also shown that a reasonable approximation to the “direct” problem (i.e.,

. one in which a region of steady flow bounded by a “rest” characteristic
exists) is obtained by specifying that one of the Riemann variables is

——

constant on the time-like boundary arc. This disturbance has been tertied
a “simple-wave-type”disturbance. A numerical example indicated that,
even for the second-order solution, the maximum change of the dependent”---
v=iables below the “rest” characteristic was of the order of 2 ~ercent
of the magnitude of the excursion of the variable during the transient.
For unsteady flow the solutions obtained contained terms involving the in-

.—

dependent variables a and P, the disturbance function and definite
integrals thereof. Therefore, solutions for integrable”disturbaricefunc-
tions sre easily obtained. ——

Comparison of the unsteady-flow solutions with those obtained by
the method of characteristics indicated that the second-order series solu-
tion accurately represents the flow. As was the case for steady flow, the
accuracy of the series solution decreases with increasing distance (i.e.,
area ratio) from
in computational

the boundary. The series
effort over the method of

solutions offer an advantage
characteristics calculations. .—
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III. INTERACTION OF A SHOCK WAVE AND A

DISTURBANCE IN A DUCT’FLOW .
●

In section II, perturbation-series solutions for unsteady quasi-one-
dimensional flow were developed. These solutions are now applied to the
determination of the motion of a shockwave in a diffuser flow under the
influence of a disturbance originating downstream of the shock. An ap-
proximate relation is used for the shock transition. It-is shown that,
for a linear variation of the flow variables in a “simple-wave-type”
disturbance, an
first order in
order solutions
equation of the

analfiical solution for the shock path can be obtained to
e. This solution is compared with both first- and second-
obtained by numerical integration of the differential
shock path.

A. The Equation of the Shock Path

For weak and moderately strong shock waves, the.s.hockvelocity can .
be approximated by

where V = v/cx (cf. ref. 6, eq. (72.06).
s refers to the immediate shock location,

In this equation the subscript
the barred quantities represent-—--

conditions upstream of the shock, and the u-nbarredterms represent con~i-
—

tions downstream of the shock. ~is equation is correct to second order
in the shock strength. Within the same degree of accuracy, the shock

.-

transttion is homentropic; and, for a “forwsrd-facing”shock wave (when
the fluid particles enter the shock from the side of larger x-values),
the Riemann variable Q is constant across the shock; that is,

%3 -acs=iis-- acs. (3.2)

These equations are applicable for weak an&moderate@ strong shocks, and
the develowent that follows is valid only for such shocks.

—
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Consider a diffuser flow ig an “epsilon duct” with a stationary shock
at the cross section x = X (see sketch).

For a diffuser flow with am i~tially@ationary shock, the conditions
upstream of the shock (i.e., u and c) are functions of x alone and
sre not influenced by any subsequent shock motion (unless, of course, the
shock is regurgitated). This, and the approximate shock relations (eqs.
(3.1) and (3.2)), imply that, regardless of the shock velocity-‘(within
the limits of accuracy of eq. (3.1), of course), the value of Q remains
constant at a given duct cross section as the shock passes the section;

although Q changes from section to section. As noted in section II-E, “ —
a ‘~simple-wave-type”disturbance has the property that the value of Q
at a given section remains approximately constant at its initial value
during the transient. Thus, if the disturbance downstream of the shock
is of this type, it will approximately fulfill the boundary condition at

.-

the shock, that is, equation (3.2). This is equivalent to neglecting the
“back reaction” of the shock on the flow field behind the shock. In other
words, the flow field behind the shock is completely specified by the
solution for the “simple-wave-type”unsteady duct flow. The subsequent
development is, therefore, based on the “simple-wave-type” disturbance.

The velocity

If the flow field
istic parameters

of the shock wave is given by

dx/dt = 7. (3.3]

behind the
u and P,

dx

dt

shock is described in terms of the character-
we have

= Xa da + Xp d~,

=tada+tpdp.
}

.
Thus equation (3.3) can be written

(3.4)

(3.5)
—
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partial derivatives of x and t --arerelated by the equations of
characteristics; that is,

Xa = (u + C)ta,
\ (3.6)

.

.

Xp = (u - C)tp.j

Substituting equations (3.6)
we obtain:

da
@=

into equation (3.5) and solving for da/d~,

c
c
;

(3.7)

where the subscript s again indicates that u and c are to be evalu-
ated immediately downstream of the shock. Substitution of the e~ression
for V (eq_.(3.1)) then yields

{ [
+(3CS.- U,)++ GS+FS}+A (us+cs)-

1

6
(~ +-Fs) yp

~a = 8cs

d$

{ [
*(US +CS) -+(fis+zs)-& (us+c,)- (% + %yz~a” * ~

s

(3.8)

In this equation, t and the “immediately downstream” quantities %) Cs
are known functions of a and ~ given by equations (2.69) for the
“simple-wave-type”disturbance. In the flow field behind the shock, up
to and including the instantaneous position of the shock, x is also a
known function of a and P= ~herefore, in principle at least, the
“immediately upstream” values us and Es can be considered as functions

of the characteristic variables as : and = are functions of x alone.
Thus equation (3.8) may be written as

da
—= G(a,f3).d~ (3.9)

This is an ordinsry differential equation for the relation between a and
f3 on the shock path. Substituting the solution of this equation in the
equations for x and t (eqs. (2.69c) and (2.69d)) yields a parametric
representation of the shock motion resulting from
at the boumdary.

Equation (3.8) can, of course, be integrated
cases. It is of interest to see if an analytical
and such a development follows.

the disturb&ce—

numerically for
solution can be

specified
-“

specific
obtained,

a“
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B. Approximate

The first-order solution

Solution for the

for the unsteady

49

Shock Path

flow field behind the shock
for a “simple-wave-type”disturbance is repeated below for convenience:

u=

c =

x=

t =

‘W ‘(w J
From the last relation it is easily shown that

The first stey in the development is to express
of the characteristicparameters. For a steady duct
U and C specified at some area ~, the following

(3.10)

.-

(3.11)

u and ~ in terms
flow with conditions
relations hold:

(3.12)

. L -1

U2 + ac2=( U+ 1). (3.13)
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.

Assume that at some area A(%) = ~, upstream of and mnal~er than ~, but
still greater than that at which sonic flow would exist, a shock occurs
(see sketch on ‘p.47). At this station we thus have--onthe downstream .
side of the shock

For a
mined

ii
@2m u

—=
%

{

a/2-

[1}
u(X) (a + 1) - u(Z) 2

stationary shock the conditions on its upstream side can be deter-
from equations (3.1) and (3.2) with V= 0, or.rnoreexactly from

—
‘S”s = 1, Prandtl equation; (3.14)

u; 2
—

+ acs = ;: + a;~, energy equation. (3.K) .,
‘

The steady supersonic flow ahead of the shock is now given by

2=__J
.

(3.16)

52 ~ =72
=(cf+ l). (3.17)

Thus, specifying an initial steady shock location by x = % and the
conditions U and

mines the variables

In the problem
written

C at the end of the diffuser, ~, completely deter-

~and~ ahead of the shock.

being considered, the duct--areavsriation is again

-e(x-Y)
A@=e .

Equation (3.16) therefore may be written

1-

where, for simplicity of
~tream s~de of the shock
U and C!,respectively.

(3.18)

.—

(3.19)
4 .

notation, ;(%) and ~(~) immediately on the up-
at its initial location have been replaced by

a
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In order to develop the upstream flow variables as functions of u
and p, it is assumed that these quantities can be represented to first

& order by

where fi(l)and
the first yower

Z2 -1-

—

)-m),:= 6(1 + a
(3.20)

z= -[1)),F(1 + ec

;(1) are functions of x. Expanding equation (3.19) to
in ~ after substituting equations (3.20) yields:

.M(~.#]&=#~+.
u [ 1

:(x-x).

Upon substituting for x from equation (3.10), the right hand side
becomes

Substituting
USillg(3.21)

{[
UE21++ (CL- j3) C22;‘2 j+O(G)-Y ,

—._.

(3.21)

equations (3.20) into (3.17), expsnding to first order, and
gives

& $ (a #-c2+y

[ 1‘+( l-&) - 2C “
(3.22)

A term that appesrs in the shock velocity relation is (~ +~). This can
now be written in terms of a and P as

Thus the flow variables ahead of the shock
functions of the characteristic variables.

.

are given to first order as

h
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We now turn to the evaluation of the right hand
(3.8) to first order. Consider the bracketed factor
that iS,
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.

side of equation
in the numerator;

Substituting the expression for the flow variables from equations (3.10)
and (3.23) and expanding equation (3.24) to first order in e gives

R
[

=RO+eR1(~-
1

p) +R2f(13) +R3% , (3.25)

where --— .-

=3C-U +6+E+
‘o 2 2 r 1

.& (U+ c!) - (6+-E) 2,

IL@@+Rl=- ~u -@(u-ac)(F-cz ~+[(u+c)-( n + E)]u(o’c-u)

4(U+1)(1-7F)C “ 8Z

[(w-c) - (a+E)lti(hE)(IF-c2 ) - [(u-i-c)- (U+E)12 TJ2(U2-C2)

8(u+l)(l-&)C
)

16(a+l)~C(l-@)

=%+( Cr+l)[(u+c) - (6 + F)]
‘2 )

4E

W(u- 13’u) - [(w-c) - ( Ju+qm(kfq - [(UW) - (M)I%2.
‘3 =

2(u+l)(l-&) 4(U+1)(1-62) 8(u+l)(l-&)~

(3.26)

Similarly, the bracketed factor in the denominator of equation (3.8),

reduces to —
.

[
s=so+q(cL-

1
p) +s2f(B) +S3Y, (3.28)

.
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*

where

. U+c 6+E [(U+ C)-(IJ+E)P
‘o=—-

—-
2 2 J

t%

SI=UQ4L T1’’(muq (U’2-C2) - [(WC) - (G+E)]u(ac-u)+
4a 4(a+l)(l-lF)c 8a~

[(w) - (n+F)]m(n-&) (U’2-C2) + [(U+C) - (–w–) I’%F(U2-C2)

8(a+l)(l-&)C
)

16(a+l)~(l-&)C

Substituting these expressions and those for the
t into equation (3.8) yields

.

[( w-c) - (17+U)J2U2

53

b

(3.29)

partial derivatives of

(1) (l))f(B)+ Ty)(GB)r, (P)l}(3 ~,{~+ dR=(a4)+ R@) + R$]}{T~)+ e[-2T$)(U4)+ (~ -~
$= {SO+dS1(a-B)+ S#(P)+ S,=]}{df)+ dzT~)(a-B)+ T~)f(@ - T&)f(a)], “

which, when expanded to first order, becomes
—

g=

m [ 1
B. + e (c@Bl + f(p)B2 + (c@)f’(p)B3 + f(a)B4 +–~5 ; (3.31)

where
—

\

/

(0)
B. = ~T1

(o)
SOT2 )

[

(1) (0) (0)
(%.),

B1’*
-2T1 ~ + T= R1 - B.(T2 S1 i-2T1

1

(1] -T ‘1) )% + T1 R2
B2=-&p3 2

(0] (1)
@)s2) ,- N(T2 So + T2

1,

/

(3.32)
B3 =ROT$l) SoT~O~,

/
BT(l) T$@,

‘4=03

b T(O)R

B5 = 13 ‘3

T

- Bo~.
SOT 0 J
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Equation (3.31) cannot be formally integrated unless the disturbance
function f(~) is known. If f(T) is a linear function of its argument,
equation (3.32) becomes a linear differential equation and can be easily .
integrated. ~king
ante, the function

use of this possibility,

[

T,0<7<

f(T) = K5,T>8;

0, ‘G< o.

Because of the nature of this function there
x,t-plane in which different versions of the
(3.31) hold.
the following

These zones are bounded by the
sketch:

f(

t
t

we-introduce for the disturb-

(3.33)
~

are three zones
right hand side
characteristics

I t
III $=8

t

I
Shock

I

\
t

x
x=x

in the
of equation
shown in

In the three zones, the function, its derivative, and integral assume the
following values: -

I

Lf

P
Zone f(a) f(p) f’(p) f(~)d~

a

I Ka w K ~K(p2 - a2)

[ J
~pz++bz-ti

II m K$ K
2

111 m m o K5(~ - a)

.

4
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In zone 1, equation (3.31) becomes

55

da

[ 1
GEBl + K(B3 + B4) =

[ 1
BO + G%35 -i-e K(B2 - B3) - B1 13. (3.34)

F@-

The solution of this equation is

eD2p
a= DO + Dl~ + (as’- D@ ,

where

‘o =

D1 =

‘2 =

and use has

(3.35)

.

K(B2 - B3) - Bl

Bl+ K(B3 +B4)’

/

(3.36)

B1 +K(B3 +B4);
)

been made of the initial condition that, when P = O, a= as.

The value of as is determined from the initial shock location. Relations

of form similar to equation (3.35) hold for the other zones; that is, a
is the sum of a linear function of ~ and an exponential function of f3.
Substitution of equation (3.35) into the expressions for x and t in
equation (3.10) @elds, to first order in e, a parametric representation
of the shock path under the action of a “simple-wave-type” disturbance of’
the form given by equation (3.33). The shock path cannot be given ex-
plicitly in x and t because the nature of the a,13-relationshipalong
the path does not permit the elimination of a and !3 algebraically.

C. Examples

The solution for the shock path presented above is correct to first
order in e. As noted previously, the expressions for the shock transi-
tion used in deriving this result are correct only for weak or moderately
strong shock waves. Because of this fact, shocks occurring at an upstream
Mach number of about 1.5 (for y = 7/5) are about as strong a shock as
can be accurately represented by the approximate equations. Therefore,.
the examples chosen till have an initial upstream Mach number of 1.5.

Another fact that enters into the determination of the region of

* applicability of the approximate solution $or the shock path is the
.- —
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accuracy of the representation of the initial steady flow offered by the
‘approximaterelations used. The flow conditions upstream of the shock
wave have been represented by equations (3.20). For a shock at Mach 1.5 ●

we have 11= -1.36458 and ~= 0.90972. Using equations (3.21) and (3.22)

to evaluate iZ(l)and 15(1),the variation of- V and F with (x - ~) has
been computed for e = 0.1 and is shown in figure (3.3-),along with the
exact values of these parameters. For values of (x - X) up to 0.4, the
first=order representation of the flow variables is quite good. At
(x - x) = 0.408, the Mach rnunberof the flow is 1.425. Therefore, i.fithe m
disturbance magnitude is limited to that which would result in a final 8
steady-state shock location at an upstream Mach number of about 1.4, the

co

representation of the upstream conditions should be adequate.

The disturbance function is specified on an x = constant line down-
stream of the initial shock location. From the examples given in section
11 for the steady-flow solution, it was evident that the first=order rep-
resentations of the flow variables sre accurate only for relatively short
distances upstream from the boundary. Because of this, the farther from
the initial shock location the place x = constant is selected, the $

greater will be the error in the shock path computed by the first-order
solution. To illustrate the accuracy afforded by the first-order solution
for the downstream flow variables, two examples have been computed. For
an upstream Mach nuniberof 1.5 the Mach number on the downstream side of

+-

the shock is 0.7011. If the boundary on which the disturbance is speci-
fied is l~cated at the section at-which the initial Mach number is 0.7,
we have X = 0.007, U = -0.73179, and C = 1.04541. For these conditions
the downstream flow variables sre shown in figure (3.2). (It willbe noted
that % does not enter this calculation exceptiby determining U and C
atx= 0.) For values of x up to 0.4 the first-order representation
is quite good. If we choose ~he boundary at the section where the initial
Mach number is 0.6, we have X = 0.830, U = -0.63481, and C = 1.05801.
This case is shown in figure (3.3). At the initial shock location, the
first-order values of the flow variables are still reasonably accurate.
Upstream of this station the departures become quite large, especially
for c. It should be noted that the values of the downstream flow varia-
bles upstream of the initial shock location (which do not exist prior to
movement of the shock) serve as the basis for the new downstream flow as
the shock moves upstream. Hence, errors in final shock location will be
larger when the boundary conditions are given f=ther from the initial
shock position. —

The first shock path calculated is for a shock initially occurring
at a Mach number of 1.5 in a duct with ~-= 0.1. The disturbance function
is speci~ied at the downstream section at which the initial l@ch numb~r -.

is 0.7 (X= 0.007) as in figure (3.2). The values of U, C!,U, and C
have been given above. The magnitude of the disturbance was selected so
that the final shock position would be that corresponding to an upstresm .
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number of 1.43. For a 5 of 4, the corresponding value of K (cf.
(3.33)) iS 0.010025. For this disturbance the shock should come to
at x= 0.388 (cf. the sketch on p. 54, point L). The coefficients

of equation (3.31) sre:

B. = 1.04087, B3 = -16.92621,

B1 = -0.78888, B4 = 0.35140,

B2 = 16.10895, B5 = -1.52893,

and as = 0.02629.

The equations relating the characteristic vsrtables on the shock
path are:

Zone I: u= -1.39236 + 1.17277S + 1.41865e-0”0g550~,

$) Zone II: a= -1.32790 + 1.16849P + 1.35689e-0’0g585~,

8. “

Zone III: u= 1.34140+ p - 1.46778e-0”07888~.

Substitution of these values into the expressions for x and t in equa-
tion (3.10) yields the shock path shown by the dash-dot line in figure
(3.4). The shock asymptotically approaches a final position of x = 0.349,
which is about 90 percent of the excursion it should have undergone. The
greater part of the shock motion occurs in zone III, which starts at
x = 0.076 on the shock path. The value of the final shock location can
be obtained dtrectly from the a,~-relation in zone III. From this equa-
tion, (a - ~) is seen to have a limit of 1.34140 as p +=. In zone III,
the integral appearing in the expression for x is a function of (a - ~),
snd therefore x is a function of this quantity alone in this zone.

To check the accuracy of the analytical expression for the shock
path, equation (3.8) was integrated numerically by using both first- and
second-order representations of the flow field behind the shock (i.e.,
eqs. (2.69)). The coefficients for these equations are listed in table
(3.1). The numerical integration was programed for the digital computer
by using the Runge-Kutta method of integration and an increm@ritin P of
2. (Halving the increment of ~ did not change the results.) The results
of the numerical integration are shown as the solid and dashed lines in
figure (3.4) and are tabulated in table (3.2). For this case the analyti-
cal approximation compares very well with that obtained by numerical
integration.
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The shock path was then calculated for the ssme initial shock condi-
tions with the disturbance specified at the section at which the Mach
number was 0.6 @= 0.830 a= in fig. (3.3)). For a 5 of-4,
of K for a final shock Mach number of 1.43 is 0.006225. For

the value
this case

the coefficients of~quation (3.31) are:

B. = 1.33816, B2 = 15.6o186,

B1 = -0.48838, %= -15.17776,

and as = 2.69885.

The a,~-relations on the shock path are

B4 =-0.63237,

B5 = -1.56876,

now:

Zone I: U= 0.57893 + 1.17443P + 2.11992e-0”057g0~,

Zone II: a = 0.73649 + 1.16658P + 1.95260e-0”~829~,

Zone III: a = 5.08497+ $ - 2.59647e-0”a884@.

The shock path calculated from these equations is shown in figure (3.5)
as the dash-dot curve. The curve i.ssimilar in shape..tothat of the pre-
ceding figure end has an asymptote of x = 1.473. The final shock posi-
tion should be x = 1.211. Thus, specifying the disturbance farther from
the initial shock location has increased the error and caused the error
to change sign. Numerical integrations of equation (3.8) for this case
yielded the other curves on this figure. (The coefficients are listed
in table (3.3) and the results of the integration in table (3.4).) For
this case it is seen that there is an appreciable difference between the
analytical approximation and the.correspondingfirstiQrder numerical
integration. This difference results from the higher-order terms that
were neglected in obtaining equation (3.31). In the first example, these
terms were of small import because the disturbance was specified so close
to the shock. The second-order numerical integration yields a final shock
position of x = 1.162, which represents a shock movement of 0.332 units.
The second-order integration in the first-example gave a shock movement
of 0.343 unitsf which is quite close to the resul~-of the present example.
This reflects the improvement of the representation of the downstream
flow afforded by the use of the second-order representation of the disturb-
ance function.

In these exsmples the shock displacement obtained from the second-
order numerical integration (the most accurate result) was always less
than that which should have been obtained. Thi= error An shock displace-
ment results from the fact that the values of U and-”--Cused in the
calculationswere obtained from the exact shock transi”t-ionrelations (eqs.
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(3.14) and (3.15)) rather than the approximate relations used in deriving
the equations for the shock path. In figure (3.6) the Mach number down-
stream of the shock is shown as a function of the Mach number ahead of
the shock for both the exact and approximate transition relations. For
the same downstream Mach nuniber,the approximate transition requires a
greater upstream Mach number than the exact transition relation. Because
the solution for the shock path employs the approximate shock relations,
the shock should come to rest at a higher upstream Mach number, that is,
after a smaller excursion,
tions. If a lower initial
final shock location would

The solution obtained

than would be indicated from the e~ct rela--
shock Mach number were chosen, the error in
be smaller.

D. Discussion

for the interaction of a shock wave and a
‘~simple-wave-type”disturbance in a duct flow @elds a shock path that
may be described as an ‘exponential.decay” approach to a final position.

~. This result is quite similar to that obtained by Kantrowitz in reference

B 2, wherein he obtained a first-order linear differential”equation relating
y x and t on the shock path by line~izing the equations of motion and

‘g* the shock transition relations.

In the examples given above, it was noted that the majority of the
shock motion occurred in zone ITXj that is, where B25. In this region,
as was requtred by the boundary conditions, the flow variables downstream
of the shock have reached their terminal values. Thus, the effect of
neglecting the “back reaction” of the shock motion on the downstream flow
conditions is quite pronounced in zone III. ms assumption, which is..
inherent in the development presente~, is not as restrictive as might ap-
pear at first glance. In the next section, it will be shown that the con-
ditions specified on the downstream bounday are reasonable-approximations
for the actual process.

.—

From the examples presented, it can be concluded that the first-order
analytical solution for the shock path offers a reasonably accurate rep-
resentation of the path, protided that the choice of the initial conditions
are such that the first-order representations of the initial steady flow
(both upstream and downstream of the shock) are accurate”.“~t”=, the
boundary on which the disturbance is specified should be fairly close to
the initial location of the shock. Also, the disturbance magnitude should
be selected so as to result tn a shock displacement that is within the
region of accuracy of the first-order representation of the upstream con-
ditions. If the boundary conditions are required to be specfiied at
fairly large distances downstream of the shock, numerical integration of
the differential equation should be employed. -.



60

IV. THE

In the preceding

NACA TM 1439

.b

FLOW FIELD BEHIND A MOVING SHOCK WAVE

section a solution for the interaction of a shock .
wave with a “simple-wave-type”disturbance in a duct-:flowwas presented.
This solution was developed on the basis of two assumptions: First, that
the simple-wave relation (u - UC) = constant held on the downstream
boundary. Second, that the “back reaction” of the shock motion on the
flow could be neglected. The solution obtained indicated that under these
assumptions the greater part of the shock motion occurred after the down-
stream flow had reached its terminal state. This lea-dsone to inquire
how well.the results obtained under these assumptions represent the actual 1a
process. That is, in the flow field behind a moving shock wave, does the
u,c-relation at a given cross section approximate Q = constant, and is
the back reaction of the shock sufficiently small in–-gnitude- that it
may be neglected?

The problem at hand is, then, to find the flow field behind a shock
wave moving in a duct-flow. This falls into the category of an “inverse”
problem as defined in section II and is tefied the “inverse-shock”problem. . –
The solution to this problem can be viewed as yielding the nature-of the
disturbance that would result in a prescribed shock ~ath.

*
A. Derivation of the Solution

Consider a shock path in the x,t-plane given by

x= Cf(t). (4.1)

The shock velocity is then given by

v ~.=— = e f’(t). (4.2)

Because an initially steady flow in the duct is desired, the initial
velocity of the shock wave must be zero. Therefore, it is prescribed
that

f’(o+) = o (4.3)

and, for convenience,
.-—

(4.4)

.

f(t) = 0, t-s o.
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Ahead of the shock there is a steady supersonic
“epsilon duct,” can be represented to first order by
eq. (3.20))

.

flow
(cf.

61

which, for the
section 111,

(4.5)

where = and ~ are the flow conditions immediately upstream of the.—
shock at its initial location, x = O in this case, and

(4.6)

As shown in section III, these relations yield quite accurate representa-
tions of the upstream flow conditions for the magnitude of shock displace-
ment considered.

After specifying the shock path and the upstresm flow field, the
next step is to determine the conditions on the downstream side of the
shock. From the approximate shock transition relations (eqs. (3.1) and
(3.2)), the conditions on the downstream side of the shock can be deter-
mined as follows:

It is assumed that on the downstream side of the shock the flow
variables can be represented to first order by

u m),
s = U(l + Gus

C(l + ecjl)),Cs = }

(4.7)

where U and C are now the flow conditions immediately downstream of
the shock at its initial location. Substituting equations (4.7) and
(4.5) into equations (3.1) and (3.2) and expanding the resulting
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expression to first order in e gives, from equation (3.1),

&(u+c-6-T)&~+
8C

}

4 (Uuy + ccy){~ -6 + c + u) ,
4C

and, from equation (3.2),

.

.

(4.8) m
NWco

(4.9) -

Substituting equation (4.2) into equation (4.8) and equating the coeffi-
cients of like powers of e in equations (4.8) and (4.9) gives

U+c+u+u= -$( U+C- M)2,

\ (4.10)

and

f’(t) =

These equations

these are given by

u- (Jc. fi-@-,
)

* (@) +&$l))(3u+ti- u - c) -

A(u+c-6-E)2Ejl)+
8C

1

(4.11)

* (Uu$l) + Ccj% - u + u i-c),

=:1) = Uu(l} - Ucc:l).s

u(l) ad c$l)jdetermine U, C, and the functions s
.

(4.12a) ,
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u= Uc+fi-az, (4.12b)

~y =f’(t)
u

(U+l)c(::u+u+c) - x (U+1)2(1-R)C {

UC(U+ u) +

2?J(UE-

}

U)(35+6-U-C)+U(U+C -n-E)2
>

2(V - U+u+c)
(4.13a)

P
= f’(t)

an

[U+l}u:a+u+c) + x (a+l)Z(l-&)u {

F(6+E) -

2E(@

}

~2-6)(3E+ u-u- c)+ fi(u+ c-n- 1 . (4.13b)
2(5 - H+u+c)

a Substituting equations (4.13) into equations (4.7) gives expressions of
the following form for the flow quantities on the downstream side of the
shock:

.
%3=

}

u+ eE3f’(t) + GE4X,

Cs = c + alf’(t) + =2X.

The Ei are given by:

(4.14)

\

4CSC

‘s=(cr+ l)(E-u+u+ c)’

U= {“qrJ+E)-‘4=[Cr + 1)2(1- IF)

2v(& -

}

–2
n)(3E+6-u-c)+wJ+c -=-c) .

2(E - U+u+c) *

/

(4.15)
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Finally, substituting equation (4.1) into equations (4.14) gives

‘s =

}

u+ a3f’(t) + G%*f(t),

‘% = c + SElf’(t] + e%zf(t).

.

(4.16)

These are the conditions on the downstream side of the shock and are,
therefore, the boundary conditions to be satisfied on this side of the
shock path. It-is of interest to note that-the effec~ of shock velocity #
appear as terms of first order in e, whereas the effects o~shock dis-
placement appear as terms of second order.

Having obtained the conditions on the downstream side of the shock,
we now proceed to determine the flow field downstream of the moving shock.
A solution of equations (2.37) is sought under the boundary conditions
given by equations (4.16). The boundary conditions are to be satisfied
in the following manner: The shock path is to be map~ed on a = p such
that t=a= $j that iS,

—
&

Xq(z,a) =x qp)p) = o;

Xqa, d =f(a), X%jp) = f(p);

x(~)(a,a) =x (n)(p,p] = o, Jn>l;

=a, t%3,13) =P;tqa,d

tqct,a} =tqpjp) =0, n>O; )

and

Jqa,a) =U(o)(p,p) =U;

u(l)(a,a) =E3f’(a), u%,$) = E3f’(~);

u(z)(a,a) =E4f(a), u(2)($,13)= E4f(~);
I

Uqa,d =U (n)(p,p) =0, n>2;
J

w.

(4.17)

(4.18)

(4.19)

.
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C(o)(a,a) =C!(0)(p,p) =C;

C%,a) = Elf’(a), C%,$)

1

= Elf’(p);

C%,a] = E2f(a), C(2)(P,P) = E2f@);

C(n)(a,a] =C (n)(p,~) = o, n>2.

The solutions uy to second order are:

@ =~,

*(1)
~l}f‘(B),=U:)(a. f3)+u2

~(z) SU$)(a- p)2+u2

1

(Z)f(a) +uy)f(P) -

.

uy)(a- B)f’(P);

~
ua c(o) = q

c(l) = - (lJf‘[p),C:h - B) +C2

65

(4.20)

(4.21a)

)
(4.21b)
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- Xp(a - p),

X(1)(CL+)2+X$l)f(p) +Xl#f(a) +xfi)(u-P)f ’(13),-1
1

.

The coefficients are given by (use has been made of the fact that
E3 = UE1):

‘2)=$ (EA+ UE2)‘3

J

-~(oc+u)(u+c)

u(z).% (u- C)(UC+ u)
4

.

(1) .lJ2/2.c1

& .E&

C!) =u’2c/4fs

(2)= ;-=3 (U+C)2 I_(E ~1
C2 4ac 4- 2

C:2).E3 ‘u4~c)2 -~+ & (E4+ UE2)

C~2}=E3 @~-#2
.

(4.22b)
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.
$] _u+c

2C

&
@ _ U2; c

@
1

=&(ac2+u7

g &)=E u-l
N
m 3~@+’)-*

T$)=E ‘c+;~$ -c)3

T~) = U
*8a2C3 (acz + F){ac2 + 2U2)

M
~. T(2) = E2 (u + 1)(U + 3
e 2 3 ~6a2C3

)(U -c)

0’)
*
.- T$@ . ~

[ 1
5(cr+l)d + U(3-5U)UC2 -1-(4a2+5cr-3)&c + u(3-rs)c3

16a2C3

—-E2~+~~-1
‘4 ‘4ac 4C2 4U c

[ 1
-1T(2) = E2 = (3~ - I)C + (d - 3)U —

4 3 16~2c3 - ‘3 ;tiz

T$ ) ‘3

[ 1
= — (u+3)@ + (2#-a-l)@C - a(3u+l)UC2 - a(a-l)C3 -
8a2C3

(E4 + aE2) ‘a + ~~ - c) + ‘[(a ~~~ + 2UI

(2) = E3(U + C)

‘6
[
U(a -1-1)C2 + 4UUC + (3U -

16a2C3
l)F] +

(E4 - aE2) (
a+l)(U+C ) ~ U[(a - l)C - 2U1

8aC2 8aC2

[ 1
T$z) = E3 ~ aC2(C - 3U) + U’@ - 5U)

32a2c3
*

T?) =E~(u2-l)U+C E a+l—-
8~2 C3 3 4~Z
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‘(4.22c)
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(o)_ u’2-c2
‘1 2C

Xp) = ~ [(2U+1)C2 + q

J1]=E .
2 &:(u+c)2 -L

2C

(1) U+ C-E u-l
‘3 ‘T 3 ~(u+c:

(1) ~+l(u+)z
‘4 =E3—

4&2

X$2) _ @

{ [ 1}
(uC2+@)(@2+2@) +aC2 (3cr+2)C2+#

48u2C3

X(2)
2

[
=-( U+l)(U -C) (3cf+l)c

1
- (U+3)U

-E3

{[
] - .UCzpu-l,c + ,5u-31q +— @ (3U+7)C+5(U+1)U~6=2C3

[
@c (4a2 + 3U -

1
l)C + (4U2 + 5CT- 3]U +

[ 1}
ac3(a+l]c+(3-u)u +

E4~+~~(@+c2) a-l @
2UC 2 *2

-— .—
4a c

E:

[ 1
— (U-l)(u+c] (3U-l)C + (a-3)u
1602C2

- ~ (U-l)(u+c)
4UC

E3U

[

—

4C72C3+ (2cr2+ u + 1)UC2 - 2(U2 + 1)U2C -8a2C3 (a+3)@+

~(+} -fi p,cz + ,U-,)uc +.2F]+ UE2] 80(E4

‘3 Q&yau+l)c3+3 u(a+lmc2+ (5U+1)U’2C+ (30-1)U3 +
II

(E4- crE2)
*(%y -$& ~u+l)cz - ,.-,]UC ,..2uq

U+1E3

{[

=C2 C2
gg 1[

- 8UC + 3U2
1}

+ U2 (4a-l)C2 - 4UC + 5U2

-1

.

2a2-
‘3 8a2

1 (U2 - C2) Cf+l(u-c)
C3 -%7 C2 “ - %

(4.22d)
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These equations give the flow field behind a shock moving on an arbitrary
path in an “epsilon duct.” The only conditions placed on the shock path

. are those of equations (4.3) and (4.4) and the fact that the shock does
not leave the supersonic portion of the duct.

B. Ewuples —.

1. The “exponential”path. - The shock paths obtained in section III
were described as “exponential decays” to their final position. There-
fore, the first shock path investigated was chosen so that it would have

“exponential-decay” approach to a final position. Such a path is given
; .———

{

[
B1-e 1

‘bt(bt +1) , taO;
f(t) =

o, t<o.
(4.23)

A

This path obviously satisfies equations (4.3) and (4.4). The coefficient
B determines the magnitude of the excursion of the shock, and b (some-
times called a “time constant”) determines the rate at which the shock
approaches its final position. For convenience, the path given by equa-
tion (4.23) will be referred to as the “exponential” path.

The first case investigated was for a shock initially at a Mach num-
ber of 1.5 in a duct with ~ = 0.1. The amplitude B was taken as 3.5,
and b was chosen to be 0.2. The shock path for these values is shown
in figure (4.1). The shock stsrts its motion at zero velocity, acceler-
ates, reaching a maximum velocity at t = l/b, then gradually decelerates
and approaches its terminal position. Over ~he time interval shown, the
shock has traversed 91 percent of its total excursion.

For an initial upstream Mach number of 1.5, the values of D and
~ are -1.36458 and 0.90972, respectively (u= 5). The corresponding
conditions downstream of the shock (using the approximate shock transi-
tion relations) are U = -0.73655 and C = 1.03533. The variation of
the downstream flow conditions along the shock path is shown in figure
(4.2). As the shock accelerates, the particle velocity decreases in
magnitude rather rapidly and then increases as it gradually approaches a
final value great= than its initial value. The sonic speed rapidly in-
creases and then decays to a final value somewhat greater than the initial
value. The vslues of the downstream flow conditions shown in figure (4.2)
were obtained by setting a = ~ in equations (4.21). The values of the

. coefficients of equations (4.21) (cf. eqs. (4.22)) for this case are given
in table (4.1).

.—

.
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Equations (4.21) were programmed for computation on an IBM type-650
digital computer. The equations were programmed to compute the values
of the flow variables at constit values of x, that is, at constant dis-
tances downstream of the initial shock location. The variation of psrti-
cle velocity and sonic speed at x = -0.5, -1.0, -1.5 f’orthe shock path
under consideration is shown as the curves in figures.(4.3),(4.4), and
(4.5), respectively, and is listed in table (4.2). At all cross sections,
the history of the flow variables is similar. The particle velocity de-
creases rapidly, reaches a minimum, and then gradually approaches a final
value lower than its initial value. The sonic speed undergoes a rapid
increase, reaches a maximum, and then decreases as it slowly approaches
a final value greater than the initial value. From this, it is apparent
that the downstream disturbance that would cause the assumed shock motion
consists of a compression followed by an expansion. The amplification of
the disturbance as it moves upstream is etident in the figures. At
x = -1.5, the magnitude of the maximum change in u is 0.0223 units or
3.87 percent of the initial value of the variable. At x = -0.5, the
maximum change,in u is 0.0360, which is 4.55 percent of’its initial
value. Also of interest is the fact that the greater part of the change
in the flow variables occurs in the first 5 to 6 units of time. Ihring
this interval the shock wave has completed only about one-third of its
total.movement. —

One of the purposes of the computation of the flow field behind a
moving shock was to determine the u,c-relation on lines of constant x.
Figures (4.3) to (4.5) have been cross-plotted,and the resulting u,c-
relations are shown in figure (4.6). At sillvalues of x, the u,c-
relation consists of an tiost linear variation during the compression
process. At the beginning of the expansion process, the curve folds back
on itself and follows an almost straight path slightly displaced from that
during the compressionprocess. At the larger values of x , the portionII
of the curve representing the expansion process moves closer to the sec-
tion representing the compression (i.e., the “hairpin’!becomes narrower).

In section III It was assumed that, in the flow field behind the
shock, the value of Q at a fixed x remained constant throughout the
transient. This requires, first, that the -u,c-relation at constant x
should be a straight line and, second, that the slope of the straight
line be equal to ~. In figure (4.6) the u,c-relation is not straight
throughout the entire transient> This is principally the result of the
fact that the shock path chosen requires an expansion as we= as a com-
pression in the downstream disturbance. (@ccc.eding ~Ples .~~. show
that, for shock paths which can be produced by compressive disturbances,
the relation can be approximated by a straight line.) The portion of the
curves of figure (4.6) representing the compression process are approxi-
mately straight lines. For these portions of the curves, the slopes have
been measured and are listed below.
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. FF+x du/dc

-0.5 5.00

m. -----
m
s’ The value of u for the.example is 5. From the table, it is seen that
u) close to the initial shock location the perturbation-series solution gives

a value of 5 for du/dc. At greater distances, the slope increases.
Thereforej only close to the initial location of the shock does the u,c-
relation during the compression approximate Q = constant. Thus, for
the region of applicability of the first-oral= interaction solution of
section III, the assumption of constant Q appears to be reasonable.

Since, for the shock to move in the prescribed fashion, the disturb-
. ante causing the motion consists of a compression followed by an expan-

sion, the shock comes to rest sooner than it would if the disturbance
were purely compressive in nature. If the path were such that a longer
time interval were required for the sane over-all.shock displacement, the
disturbance should approach a pure compression. To demonstrate this,
another case was computed for the same initial conditions and shock ex-
cursion, but with b = 0.1, one-half the pretious value. The shock path
for this value of b is shown in figure (4.7). The time interval for
the shock to complete 91 percenz of its travel”is approximately twice
that for b= 0.2. The history of the flow variables on the downstream
side of the shock during its motion is shown in figure (4.8). (The coef-
ficients of eqs. (4.21) are again given by table (4.1)). Comparison of
this figure with figure (4.2) (b = 0.2) shows that, although the curves
are quite similar in shape, the ma~itude of the maximum excursion In
the flow variables is much less in the present case. This reflects the
smaller shock velocities during the transient for the lower value of b.

The variations of u and c with time at constant x for this
exsznpleare shown in figures (4.9) and (4.10) for x = -0.5 and x= -2.0,
respectively, and are listed in tible (4.3). At x= -0.5, the flow vsrl-
ables exhibit a sharp rise followed by a gradual approach to their termi-
nal @ues. At this section the disturbance is purely compressive. Over
80 percent of the change in the flow variables occurs in the first ten to
twelve units of time. During this time period, the shock has moved but
one-third of its total travel. At X= -2.0, a slight expansion follows
the compression process. The magnitude of this ~ansion is, however, a
much smaller proportion of the total change in th-evariables in this case
than for that with b = 0.2.

,=
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The u,c-relation at the two values of x is shown in figure (4.11).
At x = -0.5, the relation is essentially a straight line over most of the
range of the variables. The fold, characteristicof the expansion in the .
first example, does not exist. There is, however, an increase of curva-
ture towards the very end of the transient.- At this value of x, the
slope of the straight portion of the curve is 5.00, as it was at the same
station for the larger value of b. At x= -2.0 (fig. (4.1.lb)),where
there is an e~ansion process of small magnitude following the compres-
sion, the u,c-relation folds back on itself-as in the first example.
The major portion of this curve is essentially a straight line with a
slope of 5.48; this again indicates the increase of the-slope of the
straight portion of the u,c-relation with distance from the initial
shock location.

0’”
h..
w
CD

2. Comparison with the method-of-characteristicssolution. - To check
the accuracy of the representation of the flow field behind a moving shock
wave afforded by the perturbation-series solution, the flow field was com-
puted by the method of characteristics. For this computation the condi-
tions on the downstream side of the moving shock wave were determined from .
the a~roximate shock transition relations (eqs. (3.1) and (3.2)) so that
the comparison could be made for the same initial conditions. The char-
acteristic net for the “exponential” shock path with B = 3.5, b = 0.2,
and an initial shock Mach number of 1.5, is shown in figure (4.12). The .
values of the flow variables at constant—x were obtained by linear in-
terpolation between the net points and are shown as the data symbols on
figures (4.3) to (4.5). At all values of x, the variation of u an c
with time as determined by the method of characteristicsis quite similar
to that given by the perturbation-series solution. There is an initial
rapid compression followed by an expansion process. At x= -0.5, the
two solutions are in excellent agreement during the first eight units of
time. After this time period, the values of c given by the method of
characteristicsare greater and the values of u smaller than those of
the perturbation-seriessolution. At greater distances from the initial
shock location these errors Increase. The magnitude o~the differences i.s

always greatest towards the end of the transient. Further, the errors
are proportionally greater for the sonic speed than they are for the
particle velocity.

These errors result primarily from the representation of the under-
lying steady flow afforded by the perturbation series rather than from
the representation of the transient process----It will be recalled from
section II that the convergence and accuracy of the series solution for
steady subsonic flow were poorest when the boundary conditions were
specified at x = L, that is, at a high-velocity section. This is seen
in figure (2.13), where even the third-order solution is accurate only
for relatively short distances downstream from the bound~y. This figure
also shows that the accuracy of the representation of the sonic speed is
much poorer than that of the particle velocity. The rather rapid decrease .

.
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in accuracy with distance frontan upstream boundary causes not only the
errors at the beginning of the transient but also accounts for the in-

. crease of the error with time at a given value of x.

The coordinate axes for the inverse-shock problem are located so
that the origin coincides with the initial shock location. Therefore,
during the course of the transient the shock wave, or carrier-of the
initial data, moves upstream from the origin, and a constant x corre-
spends to greater distances from the initial data carrier as time in-
creases. The error in the magnitudes of the flow variables should,
therefore increase with time at a constant
(4.3) to (4.5).

x, as observed in figures

To indicate the order of magnitude of the error that can be ~@ed
in the original steady flow, the second-order steady-flow solution was
computed for a duct tith e = 0.1, with the initial data given at the
cross section tith a Mach nuaiber of 0.7. This Mach number is close to
that behind a shock at Mach 1.5 for a = 5. The results are shown in
figure (4.13) as the solid curves. The exact values are shown as the
dashed curves. The rapid increase of the error in c with x is quite
apparent. JI

From these curves it is easily seen that a large roportion of
the error in the flow variables observed in figures (4.3) to (4.5) is
attributable to the inaccuracy of the representation of the underlying
steady flow.

To illustrate the effect ot initial shock Mach number on the results,
an example was calculated for an “exponential’:shock path with B = 3,
b = 0.1, E = 0.1 and an initial shock Mach number of 1.4. The shock path
for this case is shown in figure (4.14) and the flow conditions on the
downstream side of the shock in figure (4.15). The coefficients of equa-
tions (4.21) for this case are given in table (4.4). The variation of
the flow variables at x = -0.5 and -1.0 are shown in figures (4.16) and
(4.17), respectively, and sre listed in tcible(4.5). Thehistmries of
the flow vsriables for ,tbiscase are very similar in nature to those given
previously for a shock initially at Mach 1.5 meting on an exponential path
with b = 0.1. At X’= -0.5, the disturbance is entirely compressive with
the major portion of the change in the flow variables occurring in the
first ten units of time. At x = -1.0, the compression process is fol-
lowed by a very slight expansion process. The amplification of the dis-
turbance as tt moves upstresm is quite etident. The u,c-rela.tions at
the two values of x are shown in figure (4.18). Again, these curves
are almost straight lines with that at x = -1.0 showing the characteris-
tic fold that indicates the expansion process. .—

.
This case was also solved by the method of characteristics. The

results sre shown as the data synibolsin figures (4.16) and (4.17). As
in the earlier example, the representation of the particle velocity is

. more accurate than that of the sonic speed. Again, the history of the” ‘--”-—
.—
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flow variables given by the method-of-characteristicssolution is very
similar to that from the series solution. The errors increase with time
at a fixed value of x and are greater at the larger value of x. In
this case the errors are relatively larger.than those observed for an
initial Mach number of 1.5. The increase in relative error is caused by
the fact that, for an initial shock Mach number of 1.4, the downstream
flow is specified at a cross section with higher subsonic velocity than
for a shock at Mach 1.5. This further diminishes the accuracy of the
series representation of the underlying steady flow.

3. The “cosine” path. - The examples presented thus far have sll been aw
for the ‘exponential” shock path given by equation (4.23). For this path
it was seen that the u,c-relation at constant x couldbe approximated
by straight lines for the compression and expansion phases of the disturb-
ance. To demonstrate that such an approximation holds for other shock
paths, equations (4.21) were evaluated for a path given by

[

;B(l - Cosut), O<uYt<fi;

f(t) = o, #t<o; (4.24) “

(B, .

This path satisfies equations (4.3) and (4.4), and the magnitude of the
excursion of the shock is given by the coefficient B. For convenience,
this path till be referred to as the “cosine” path. _

The case investigated waa for B = 3.5 and u = Yc/20 with an ini-
tial. shock Mach number of 1.5. The total shock motion and initial shock
Mach number are the same as those of the first-example for the “exponen-
tial” path. As the coefficients of equations (4.21) are functions of the
initial conditions only, the values given in table (4.1) apply to the
present exsmple. The history of%he flow variables at x = -0.5 and
-1.0 are shown in figures (4.19) and (4.20), respectively, and are listed
in table (4.6). For the shock to move on the prescribed path, the dis-
turbance consists of a compression followed by an expansion process. The
trigonometric nature of the shock path function is reflected in the ap-
pearance of the variations of u and c. The vsriation of u and c
have the appearance of slightly distorted, displaced cosine functions.

The u,c-relations at constant x are shown in figure (4.21). For
the “cosine” path, the relation again consists of an almost straight
section followed by an abrupt fold to a secoridstraight sectionj charac-
teristic of the expansion process. Again, the slope of the straight
portion of the u,c-curve increases with distance from the initial shock
location. The character of the relation between the downstream flow
variables is thus seen to be relatively independent of the nature of the
shock path.

.

8
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C. Discussion

. From the examples presented, it can be seen that the perturbation-
series solution gives a fairly accurate picture of the history of the
flow variables downstream of a meting shock wave. The agreement of the-”
series solution with the method-of-characteristicssolution is not as
good as that observed for the unsteady-flow examples given in section II.
However, the discrepancieswere shown to =ise primarily from the series
representation of the underling steady.flow. For subsonic flow specified
on an upstream boundsry at which the flow velocity is high, the series

—

representation of the steady flow is much less accurate than that for a
flow specified at a low-speed downstream boundary.

For an “exponential” shock path (which approximates that obtained
in section III for the direct interaction problem) the greater part of
the change in the flow variables was seen to occur during the esxly part
of the transient. During this early part of the transient, the shock
moved but a small part of its total travel. This is similar to the result

3“
obtained in section 111, where it was found that, for the disturbance
function employed, most of the shock motion occurred after the downstream

~ conditions had ceased to vary. For the “exponential”path with b = 0.1,
the variation of the flow variables at constant x (cf. fig. (4.9)) can

8- be reasonably approximatedby the disturbance function given by equation
(3.33). The largest discrepancies for such an approximation would occur
in the region of the “knee” of the curves of figure (4.9).

The u,c-relations at constant x were seen to be approximately
straight-line relations for the “exponential” paths that did not require
expansion processes to bring the shock to rest. For values of x close
to the initial shock location, the u,c-relation can be approximated by
the Q = constant relation employed in section III. At greater disaces
from the initial shock location, the slope of straight portion of the

.—

u,c-relation increases; this iqdicates that the constant Q assumption
employed in section III is reasonably accurate only for short distances
downstream of the shock.

.

For shock paths requiring an expansion process to arrest the motion
of the shock> the u,c-relation at constant x is almost a straight
line during the compression process. At the peak of the compression,
the u,c-relation abruptly folds back on itself and follows a slightly
different, but again almost straight, path during the expansion process.
This was true not only for the “exponential!’path but also for the ~’cosine”
path; this indicates that the relationship between the dependent m.iables
is not greatly influenced by the nature of the shock path.
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To compute the series solution at a given value of x required
about 7 minutes of digital computer time. Therefore, to compute the solu-
tion at three values of x required about 21 minutes .ofmachine time. .
The method-of-characteristicssolution required 145 minutes of machine
time to compute the net points covering the same range ON-X and t.
To this time must be added that required to perform the necessary inter-
polations. The series solution offers, therefore, a considerable saving
in computational effort for the solution of this problem.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

—

Cleveland, Ohio, Aug. 22, 1958

a
%
CD

.

.
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. A

B

Bi

F

c+

c-

K

L

M

N

P

Q

“ T

cross-sectional

amplitude

coefficients,

dimensionlesss

initial value

APPENDIX - SYMBOIS

area of cut

eq. (3.32)

constant

of sonic speed

—

sonic speed immediately upstream of stationary shock

characteristic of family with slope u + c

characteristic of family with slope u - c

coefficient of ~-th member of k-th order terms in series for sonic
speed

----—

sonic speed

sonic speed u~stream of shock

coefficients, eq. (3.36)

coefficients, eq. (4.14)

eqs. (2.46) and (2.47)

duct length

Mach number

eqs. (2.46) and (2.47)

pressure

Riemann invariant, u - uc

coefficients, eq. (3.26)

coefficients, eq. (3.29)

time
._
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T\k) coefficient of j-th member of k-th order terms in series for time

t time

u initial value of particle velocity

B particle velocity irmnediately upstream of stationary shock

u~k)
coefficient of j-th member of k-th order terms in series for
particle velocity

u particle velocity

E particle velocity upstream of shock

v dimensionless shock velocity

m

●

v shock velocity b

(k)
‘s

x

Y

a

P

Y

coefficient of j-th member of k-th order terms in series for space
coordinate .

0-l

E
CD

space coordinate
—

space coordinate, two-dimensional steady flow

characteristicparameter of family with slope .U- c

characteristic parameter of family with slope u + c

ratio of specific heat at constant pressure to specific heat at
constant volume

pe~fod

“smallness” parameter

eq. (2.23)

eq. (2.31) .-

i.ndex

E parameter

a 2/(r - 1)

.

.
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.

‘r parameter —

L!J. circular frequency

Subscripts:

B at shock location

0-2 * critical condition

E
m
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TABLE 2.1. - COEFFICIENTS OF EQUATIONS (2.58) FOR

● u= -0.37879, C = 1.08226, AND u = 5 (r = 7/5)

(k)
‘J

(k)
‘J

1 +0.47484
2
3
4
5
6
7

l--
8
9
10
SL

1 2

-0.03989
+1.36687
+0.31687
+1.12250

L_E!!%
o 1

J

1 +0.32500 i41.04851
2 +0.67500 +0.45044
3 -0.93554
4
5
6
7
8
9
10

-0.01455
+0.47507
-0.10007
+0.16204
+0.46192
+0.88876
+0.02252

-0.32339

\ll

1 2

J

1 -0.20497 -0.05409
2 +2.50000 -0.47044
3 +0.84923
4 +0.56818

2

—

1.
+0.00918
-0.20309
-0.00182
-0.10492
-0.16017
-0.60830
+0 .03201
-1.35535
+0.86443
-0.41621
+0.67234 —

Erl=l



TABLE 2.2. - COEFFICIENTS

u= -0.37879,

(k)
‘J

(k)
‘J

NACA TM 1439

OF EQUATIONS (2.69) FOR

c = 1.08226, AND a = 5 (Y= 7/5)

\

k
J

1
2
3
4
5
6
7

~

k
J

1
2
3
4
5
6
7

0

+0.47484

0

+0.32500
+0.67500

1

-0,03989
+2.73375
+-0.42249

1

+0.04850
-1.87108
+0.60059

l\lk 1

I

2
J

L(k) ~

‘J 3

-0.20497 -0.05409
+5.Ooooo +1.69846

-0.81778

1 2“

(k) ;

CJ s

-0.01434
+1.00000

-0.00776
+0.49310
+0.11431

2

-0.01455
+0.95014.
-8.79412
+0.00953
+2.43241
+1.99698
-0.12190

2“

+0.00917
-0.40619
+3.45775
+0.20080
-1.66484
+2.83877
+0.33296

—

.

8

—

●

.
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TAELE 3.1. - COEFFICIENTS

83

OF EQUATIONS (2.69) FOR

4 u = -0.73179, c = 1.04541, u = 5

(k)

‘J

1 -0.38251 -0.09017
2 +5.Ooooo +1.91049
3 -0.33714

Cn
m
N
u-)

Fl=I=l
1
2
3

-0.05355
+1.Ooocx)

-0.02799
-1-0.75531
+0.02352

(k)
‘J

o 112
\

k
j

1
2
3
4
5
6
7

+0.26658 -0.15383
+4.33501
+0 .09000

-0,05611
+2.04768
-13.17190
-0.09825
+10~6353
+0.90394
-0.14828

...—

\

k
J

0 1 2

1
2
3
4
5
6
7

+0.15000
+0.85000

+0.lm44
-2.43924
+0.28697

+0.02093
-0.70069
+4.66657
+0 .08572
-0.82350
,+2.88229
+0.16470

(k)
‘J

.

-1
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TABLE 3.2. - NUMERICAL INTEGRATION OF EQUATION FOR SHOCK PATH FOR

u= -0.73179, C = 1.04541, H = -1.36458, 6 = 0.~972, MD ~ = 0,007~ h

?

o
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62—

First order “-

a

0.02629
2.12527
4.26928
6.42758
8.56341

10.67989
12.77972
14.86522
16.93839
19.00099
21.05451
23.10025
25.13932
27.17268
29.20115
31.22545
33.24618
35.26387
37.27895
39.29181
41.30277
43.31211
45.32008
47.32686
49.33265
51.33758
53.34178
55.34536
57.34840
59.35100
61.35321
63.35510

x

0.00700
.03421
.07525
.11844
.15490
.18570
.21177
.23386
.25258
.26846
.28195
.29340
.30314
.31141
.31845
.32443
.32952
.33386
.33754
.34068
.34335
.34563
.34756
.34921
.35062
.35181
.35283
.35370
.35443
.35506

J

.35560

.35605

t

0.02236
2.10595
4.22668
6.36060
8.47593

10.57512
12.66034
14.73349
16.79622
18.84997
20.89598
22.93534
24.96900
26.99777
29.02234
31.04332
33,06123
35.07652
37.08955
39.10067
41.11016
43.11824
45.12514
47.13101
49.13602
51.14029
53.14392
55.14702
57.14967
59.15191
61.15383
63.15546

Second order

a

0.02629
2.L2536
4.26996
6.42942
8.56651

10.68403
12.78450
14.87020
16.94315
19.00513
21.05770
23.10223
25.13990
27.17174
29.19863
31.22132
33.24046
35.25657
37.27015
39.28158
41.29121
43.29930
45.30612
47.31.185
49.31667
51.32072
53.32413
55.32699
57.32940
59.33142
61.33313
63.33456

,x

0.00700
.03424
.07542
.1.1895
.15576
.18685
.2130%
.23521
.25386
.26957
.28280
.29393
.30330
.31118
.31781
.32339
.32808
.33202
.33533
.33812
.34046
.34242
.34408
.34547
.34663
.34762
.34844
.34913
.34972
.35021
.35062
.35096

t

0.02236
2.10602
4.22724
6.36214
8.47852

10.57859
12.66436
14-.73769
16.80022
18.85344
20.89864
22.93697
24.96943
26.99689
29.02010
31.03969
33.05622
35.07015
37.08189
39.09178
41.10011
43.10712
45.11301
47.1.1797
49.12215
51.12566
53.12861
55.13109
57.13317
59.13492
61.13640
63.13764

—
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mm 3.3. - COEFFICIENTS

85

OF EQUATIONS (2.69) FOR

—...-.——

m
z
In

-—----—

u= -0.63481, C = 1.05801, a = 5

1 2
J

(k) ; -0.33582 -0.08243

% s
+5 .OocOo +1.86210

-0.46552

1 2
J

(k) ; -0.04030 -0.02132

CJ 3
-1-1.00000+0.67713

+0 .04232 —

(k)
‘J

(k)
‘3

Kk
J

I 1
2
3
4
5
6
7

\

k
J

1
2
3
4
5
6
7

0 1

+0.33856 -0.11445
+3.84002

2

-0.04173
+1.69622
-11.79578
-o.093M
+1.81471
+1.20981
-0.16319

0

+0.20000
+0.8CQC0

1 2

+0.08507
-2.26841
+0.37806

+0.01716
-0.60600
+4.28808
+0.11520
-1.07201
+2.85871
+0.21440

—.

.

*
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TABLE 3.4. - NUMERICAL INTEGRATI~ OF EQUATION FOR SHOCK PATH FOR

u= -0.63481, C = 1.05801, ~ = -1.36458, v= ().90972,~ ~ = 00830~ *

T
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
50
52
—

First order

a x t

Second order

a I x I t

2.69884
4.79665
6.93161
9.11598

11.28114
13.42807
15.56156
17.68018
19.78637
21.88138
23.96637
26.04237
28.11031
30.17102
32.22526
34.27369
36.31694
38.35553
40.38998
42.42071
44.44812
46.47257
48.49436
50.51380
52.53112
54.54656
56.56032
58.57258
60.58350
62.59324
64.60191
66.60963

0.83000 2.22018
.86977 4.29379
.92103 6.39908
.97238 8.55485

1.01771 10.69487
1.05779 12.82069
1.09326 14.93369
1.12468 17.03511
1.15253 19.12610
1.17723 21.20769
1.1981.5 23.28079
1.21861 25.34627
1.23589 27.40488
1.25125 29.45733
1.26490 31.5U424
1.27703 33.54617
1.28781 35.58364
1.29740 37.61711
1.30593 39.64700
1.31352 41.67368
1.32027 43.69750
1.32627 45.71875
1.33162 47.73771
1.33637 49.75462
1.34060 51.76969
1.34437 53.78313
1.34772 55.79512
1.35070 57.80580
1.35335 59.81532
1.35571 61.8238Q
1.35782 63.83136
1.35969 65.83809

2.72931
4.77498
6.86908
9.01770

11.14585
13.25611
15.35078
17.43191
19.5U134
21.56065
23.61J26
25.65440
27.69113
29.72238
31.74895
33.77152
35.79069
37.80696
39.82077
41.83247
43.84240
45.85081
47.85795
49.86399
51.8691.1
53.87345
55.87712
57.88023
59.88287
61.88510
63.88699
65.88859

0.82999
.85655
.89706
.93749
.97184

1.00099
1.02574
1.04672
1.06452
1.07961
1.09240
1.10324
1.11243
1.12021
1.12680
1.13238
1.13710
1.14111
1.14450
1.14737
1.14980
1.15186
1.15360
1.15507
1.15632
1.15738
1.15828
1.15903
1.15967
1.16022
1.16068
1.16107

2.24933
4.27834
6.34890
8.47476

10.58363
12.67757
14.75841
16.82784
18.88736
20.93828
22.98179
25.01891
27.05056
29.07750
31.10042
33.U991
35.13646
37.15052
39.16245
41.17257
43.18116
45.18844
47.19461
49.19984
51.20427
53.20802
55.21120
57.21389
59.21618
61.21811
63.21974
65.22113

ul

E
u)
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‘IMBm 4.1. - COEFFICIENTS OF EQUATIONS (4.21) FOR

4 6= -1.36458, ~ = 0.90972, U = -0.73655, C = 1.03533,

e = 0.1, u = 5, E2 = -0.000379, E3 = 1.17851, E4 = -0.54772

1 2

J

1 -0.38128 -0.08870
(k) 2 +1.17851 -0.19741

‘J 3 -0.35031
4 -0.44777

FL=m

(k)
‘J

(k)
‘J

!
k

J

1
2
3
4
5
6
7
8

\

k
J

1
2
3
4
5

,6
7
8

0

-0.25567

0

+0.14429
-0.85571

1

+0.15729
+0.87534
+0.12466
+1.03554

1

-0.10307
-0.41724
-0.58443

1
2

+0.05741
-0.74701
-0.08608
-0.01701
-0.32413
-0.15189
+0 .48854
+0.50493

2

-0.02171
-0.26610
+0.31446
-0.05693
+0.14965
-0.09983
+0.16785
-0.28497 .
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T

—
o

1
z

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
L9
?0
—

TABLE 4.2. - SERIESSOLUTIONFOR FLOW FIELD~

“ElC?ONENTM”SHOCKPATH

InitialShockMach Number= 1.5

B=3.5, b=0.2>.s=0.1, u =5

a

-1.77450.
-.73179
.26073

1.21853
2.15378
3.07584
3.99107
4.90392
5.81751
6.73401,
7.65486
8.58100
9.51292
LO.45084 1
EL.39474L

J.

L2.34443 !
L3.29964L
L4.25998 :
15.22507.
L6.19447 .
L7.16778 .

x= -0.5

t

,1.48721
-.44361
.55106

1.51527
2.46068
3.39503
4.32366
5.25029
6.17755
7.10728
8.04069
8.97857
9.92135
0.86920
1.82209
2.77988
3.74232
4.70808
5.67984
6.65423
7.63189

F

—
o

1
2
3
4
5
6
7
8
9
10
U
12
X5
14
15
16
17
18
19
20—

-u. IC

).671681.04407
.660771.04624
.653021.04760
.647781.04887
.644431.04958
.642451.05002
.64U4 1.05026
.641091.05037
.641181.05039
.641551.05036
.642081.05028
.642691.05019
.643341.05039
.64398,1.S14998
.644591.04988
.645171.04978
.645701.04970
.646181.04961
.646611.04954
.647001.04947
.647341.04941

a

-3.31655
-2.23927
-1.2239C
-.24771
.70227

1.63276
2.55195
3.46S74
4.37825
5.29235
6.21002
7.13254
8.06064
8.99477
9.93498
LO.881.18
L1.83313
L2.7S048
L3.75285
L4.71981
L5.69092

x = -1.0

t

-2.73255
-1.65384
-.63541
.344U

1.29955
2.23926
3.17023
4.09718
5.02342
5.95130
6.88238
7.81769
8.75781
9.70307
10.65348
IL.60884
13.56923
13.53404
14.50304
15.47565
16.45212

—
x = -1.5

a

-4.72877
-3.62947
-2.59981
-1.61501
-.65878,
.27966

1.20404
2.l19w
3.03222
3.94477
4.85995
5.77943
6.70423
7.63492
8.57172
9.51464
10.46348
U. 41795
12.37766
13.34221
14.31115

t“

-3.83893
-2.73757
-1.70367
-.71374
.24769

1.191d7
2.12365
3.05046
3.97549
4.80146
5.83024
6.76306
7.7~6
8.64340
9.59142
10.54464
11.50285
12.46577
13.43305
14.40433
15.37922

-u

3.57608
.56BJ2
.56243
.55857
.55J51O
.55467
.55401
.55387
.55408
.55451
.55507
.55568
.55632
.55693
.55752
.55@07
.55858
.55803
.55944
.55981
.56013

c

1.05470
1.05619
1.05727
1.05@01
1.05850
1.05879
1.05893
1.05S98
1.05895
1.05889
1.05880
1.05869
1.05858
1.05847
1.05836
1.05826
1.05817
1.05e09
1.05801
1.05794
1.05788

-u c

3.619851.05022
.610711.05200
.604191.05329
.599751.05418
.596921.05476
.595291.05511
.594491.05529
.594281.05537
.594441.05536
.594841.05531
.595381.05523
.595991.05513

1

.596621.05502

.597251.05492

.597841.05482

.598391.05472

.598901.0W63

.599361.05455

.599781.05448

.~14 1.05442,

.600471.05436

●
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TABLE 4.3. - SERIES SOLUTICINFOR FLOW FIELD EEHIND

a “EXPONENTIAL”SHOCK PNIIH

Initial Shock Wmh Number = 1.5

B = 3.5, b =O.l, G= O.1,1S=5

P I
I a

o -1.77U9
2 .23813
4 2.20876
6 4.15117
8 6.07667
10 7.99307
12 9.80582
14 IL.81868
16 13.73423
18 15.65416
20 17.57950
22 19.51081
24 21.44832
26 23.39199
28 25.34159
30 27.29682
32 29.25727
34 31.22253
36 33.19213
38 35.16565
40 37.14270

x = -0.5

t

-1.48721
.52627

2.50203
4.45427
6.39225
8.32244

10.24450
12.17613
14.10994
16.03016
17.97560
19.91099
21.86816
23.81679
25.77517
27.74060
29.70976
31.67907
33.65483
35.63334
37.61138

-u

2.67168
.66604
.66169
.65841
.65596
.65414
.65281
.65183
.6511.2
.65060
.65023
.64996
.64977
.64963
.64954
.64948
.64944
.64942
.64841
.64941
.64941

c
II

a

1.04407 -6.06210
L.04520 -4.01271
1.04609 -2.01305
1.04678 -.04556
1.04731 1.89872
1.04771 3.82618
1.04802 5.74448
1.04826 7.65907
1.04844 9.57373
1.04858 IL.49103
1.04869 13.41267
1.04877 15.33968
1.04883 17.27261
1.04888 19.21165
1.04892 21.15676
1.04895 23.10771
1.04897 25.06418
1.04898 27.02577
1.04899 28.99205
1.04900 30.96258
1.04901 32.93693

x= -2.0

t

-4.85682
-2.80519
-.80075
1.17249
3.124&3
5.06339
6.99577
8.92565
10.85180
12.78483
14.72463
16.66934
18.60309
20.55725
22.51.121
24.47308
26.44001
28.40870
30.38558
32.35703
34.33950

-u

).53801
.53436
.53157
.52949
.52800
.52697
.52630
.52587
.52562
.52550
.52546
.52548
.52554
.52562
.52571
.52580
.52590
.52599
.52607
.52616
.52623

c

1.05789
1.05854
1.05805
1.05943
1.05971
1.05980
1.06003
1.06010
1.06014
1.06016
1.06016
1.06015
1.06013
1.06011
1.06009
1.06006
1.06004
1.06002
1.05999
1.05998
1.05996

.-
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TABLE 4.4. - COEFFICIENTS OF EQUATIONS (4.21) FOR

u= -1.29987,??= 0.92848, U = -o-77119, C“= 1.03421

E = 0.1, u =

(k)
‘J

(k)

CJ

(k)
‘J

(k)

‘J

5, E2 = -0.04598, E3 = 1.24223, E4 = -0.77151

l\lk 1
I

2
J I

W%!a
EEI= -
L

1
2
3
4

\

k
J

1
2
3
4
5
6
7
8

+0.05947 +0.03075
+0.24845 -0.02711 ,-

-0.01887
]+0.19576

o

-0.22958 -+0.17262 +0.06%1
+0.88891 -0.85824
+o.lllo9 -0.08957
+1.13569 -0.01363

-0.53452
+0.16612
+0.54863
+0.54956

\

k o 1
J I 2

3_L_E!!

<

g“

—

.0

*
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T

—
o
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40—

TABLE 4.5. - SERIES SOLUTION FOR FLOW FIELD BEHIND

‘-~~~” sHOK PATE

Initial Shock Mach Nuniber= 1.4

B =3.0, b=o.l, e=o.l, u= 5

x= -0.5

a

-1.92014
.09526

2.06954
4.01594
5.94544
7.86566
9.78194
11.69800
13.61640
15.53883
17.46637
19.39958
21.33873
23.28381
25.23462
27.19089
29.15223
31.11824
33.08849
35.06256
37.04004

~

-1.63773
.37839

2.35679
4.31122
6.253J_0
8.18294
LO.11133
L2.03947
13.96956
15.90307
17.84093
19.78365
21.73144
23.68431
25.64210
27.60456
29.57137
31.54219
33.51665
35.49439
37.47506

-u c

).697991.04450
.69320 1.04545
.68953 1.04619
.68680 1.04675
.68478 1.04717
.68331 1.04749
.68224 1.04772
.68147 1.04789
.68092 1.04801
.68052 1.04810
.68024 1.04816
.68004 1.04821
.67989 1.04824
.67983 1.04827
.67973 1.04828
.67969 1.04829
.67966 1.04830
.67965 1.04831
.67964 1.04831
.67964 1.04831
.67964 1.04831

r

a

-3.53678
-1.50456

.48409
2.44137
4.37785
6.30224
8.22072
10.13758
12.05585
13.97754
15.90394
17.83582
19.77353
21.71715
23.66653
25.62145
27.58155
29.54640
31.51560
33.48873
35.4653e

x= -1.0

t

-2.96193
-.92850
1.06267
3.02605
4.97192
6.90760
8.83829
10.76764
12.69820
14.63166
16.56914
18.51127
20.45836
22.41047
24.36749
26.32921
28.29532
30.26549
32.23935
34.21654
36.19672

-u

0.64161
.63770
.63473
.63252
.63094
.62981
.62902
.62848
.62812
.62788
.62773
.62764
.62759
.62758
.62758
.62760
.62762
.62765
.62767
.62770
.62773

c I
1.05240
1.05215
1.05273
1.05316
1.05347
L.05369
1.05384
1.05394 .
1.05400
1.05404
1.05406
1.05407
1.05407
1.05406
1.0!5405
1.05404
1.05403
1.05402
1.05401
1.05400
1.05399
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P

o
1
2
3
4
5
6
7
8
9
10
U
12
13
14
15
16
17
18
19
20

TABLE 4.6. - SERIES SOLUTION FOR FLOW FIELD ~

“COSINE” SHOCK PATH —

Initial Shock Mach Nuinber= 1.5

B = 3.5, m = Yc/20,E =0.1, U=5

x= -0.5

a t -u

-1.77449 -1.48721 0.67168
-.75764 -.47004 .66762
.24558 .53406 .66334

1.23427 1.52548 .65900
2.20861 2.50487 .65472
3.16962 3.47304 .65063
4.11850 4.43099 .64684
5.05658 5.37981 .64344
5.98532 6.32066 .64053
6.90620 7.25476 .63817
7.82083 8.18342 .63638
8.73087 9.10800” .63522
9.63804 10.02992 .63468
10.54415 10.95066 .63475
U.45103 11.87178 .63542
L2.36060 12.79489 .63665
13.27477 13.72163 .63840
14.19551 14.65369 .64062
15.12478 15.59276 .64324
16.06438 16.54044 .64622
17.01610 17.49829 .64947

c

1.04407
1.05488
1.04574
1.04661
1.04749
1.04833
1.04912
1.04983
1.05045
1.05096
1.05136
1.05163
1.05178
1.05180
1.05170
1.05149
1.051.17
1.05075
1.05025
1.04968
1.04905

a

-3.31656
-2.28658
-1.27007
-.26692
.72269

1.69787
2.65942
3.60841
4.54611
5.47392
6.39340
7.30619
8.21407
9.11886
10.02260
10.92722
11.83482
12.74750
13.66733
14.59633
15.53644-

x= -1.0

t

-2.73255
-1.70~08
-.68427
.32079

1.31329
2.29364
3.26251
4.22076
5.16940
6.10955
7.04246
7.96946
8.89201
9.81162
LO.72999
L1.64$77
L2..56975
L3.49473
!_4.42555
L5.36399
L6.31174

-u

2.61985
.61646
.61288
.60923
.60564
.60220
.59902
.59618
.59375
.59179
.59034
.58943
.58905
.58921
.58988
.59103
.59262
.59461
.59694
.59955
.60239

c

1.05023
1.05089
1.05159
1.05231
1.05303
1.05372
1.05436
1.05495
1.05545
L.05586
1.05617
1.05637
1.05647
1.05646
1.05636
1.05616
1.05587
1.05550
1.05506
1.05457
1.05403
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Figure2.3.- Area variationfor “epsilonduct-~’jc = 0.1,L = 6.
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Flgure 2.4. - Particle velocity as a function of x. S&sonic flow spec-
ified on x = O. “Epsilon duct”: & = 0.1, L = 6, U= 1.

*



NACA TM 1439

c

1.4

1.3

1.2

Second order .
8 Third order 7

Exact solution

1.1.

1.0
0 1 2 3 4 5 6

x

u-l
N
c?!
CD

Figure 2.5. - Sonic speed as a funct~on of x. Subsonic flow apectftedon
x= o. “Epsilon duct”: C = 0.1, L= 6, U* 1.
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Figure2.6.- x as atictionor (a- B). Subsonicflowspecifiedon x = O. “Epsilon
fiuct’v:e= 0.1,L = 6, a= 1.
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(a) Particlevelocity.

Figure 2.8. -
on x=O.

Flow variablesas a functionof x. Subsonicflow specified
“Epsilonduct”: &=c).l, L=6,13= 5. -..—
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Figure 2.13. - Concluded. Flow variables as a function of x. Subsonic
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